P_S(t)=\sum_{1\in S_0 \subsetneq S}(1-t)^{T(S_0, S - S_0)}\left[1-P_{S_0}(t)\right]\qquad(1\in S)
边界条件是P_{\{1\}}(t)=0,因为单一的点永远是连通的。
那么有
\begin{aligned}\int_0^1P_S(t)\mathrm{d}t&=\sum_{1\in S_0 \subsetneq S}\int_0^1(1-t)^{T(S_0, S - S_0)}\left[1-P_{S_0}(t)\right]\mathrm{d}t\\&=\sum_{1\in S_0 \subsetneq S}\left[\int_0^1(1-t)^{T(S_0, S - S_0)}-(1-t)^{T(S_0, S - S_0)}P_{S_0}(t)\mathrm{d}t\right]\\&=\sum_{1\in S_0 \subsetneq S}\left[\frac{1}{1+T(S_0, S - S_0)}-\int_0^1(1-t)^{T(S_0, S - S_0)}P_{S_0}(t)\mathrm{d}t\right]\end{aligned}
同理,
\int_0^1(1-t)^kP_S(t)\mathrm{d}t=\sum_{1\in S_0 \subsetneq S}\left[\frac{1}{1+k+T(S_0, S - S_0)}-\int_0^1(1-t)^{k+T(S_0, S - S_0)}P_{S_0}(t)\mathrm{d}x\right]