题解:CF2140E1 Prime Gaming (Easy Version)
E1
首先
接下来只需考虑
先钦定从左往右数第
设
其中
设
也就是等价于如下表达式:
nxt[S][i] = ((S >> (n - i)) << (n - i)) | ((S & ((1 << (n - i - 1)) - 1)) << 1);
最后的答案为
代码如下:
void solve ()
{
int n = read (),m = read (),k = read (),ans = 0;
vector <int> fl (n);
for (int i = 1;i <= k;++i) fl[read () - 1] = 1;
if (m == 1) {puts ("1");return;}
vector <vector <int>> dp (1 << n,vector <int> (2,0)),ndp (1 << n,vector <int> (2,0)),nxt (1 << n,vector <int> (n + 1));
for (int S = 0;S < (1 << n);++S)
for (int i = 0;i < n;++i) nxt[S][i] = ((S >> (n - i)) << (n - i)) | ((S & ((1 << (n - i - 1)) - 1)) << 1);
dp[0][0] = dp[0][1] = 0;dp[1 << (n - 1)][0] = dp[1 << (n - 1)][1] = 1;
for (int i = 2;i <= n;++i)
{
for (int S = 0;S < (1 << i);++S)
{
ndp[S << (n - i)][0] = 0,ndp[S << (n - i)][1] = 1;
for (int j = 0;j < i;++j)
if (fl[j]) ndp[S << (n - i)][0] |= dp[nxt[S << (n - i)][j]][1],ndp[S << (n - i)][1] &= dp[nxt[S << (n - i)][j]][0];
}
for (int S = 0;S < (1 << i);++S) dp[S << (n - i)][0] = ndp[S << (n - i)][0],dp[S << (n - i)][1] = ndp[S << (n - i)][1];
}
for (int S = 0;S < (1 << n);++S) ans += dp[S][0];
printf ("%d\n",ans + (1 << n));
}