题解 P3810 【【模板】三维偏序(陌上花开)】
安利蒟蒻CDQ分治总结
分治就是分治,“分而治之”的思想。
那为什么会有CDQ分治这样的称呼呢?
这一类分治有一个重要的思想——用一个子问题来计算对另一个子问题的贡献。
有了这种思想,就可以方便地解决更复杂的问题。
这样一句话怎样理解好呢?还是做做题目吧。
三维偏序问题,即给出若干元素,每个元素有三个属性值
不用着急,先从简单的问题开始
试想一下二位偏序也就是
先按
于是,对于每一个
具体实现?动态维护
那么三维偏序呢?我们只有在保证前两位都满足的情况下才能计算答案了。
仍然按
为了保证第二维也是左边小于等于右边,我们还需要排序。
想到归并排序是一个分治的过程,我们可不可以在归并的过程中,统计出在子问题中产生的对答案贡献呢?
现在我们有一个序列,我们把它递归分成两个子问题,子问题进行完归并排序,已经保证
于是,问题降到了二维。我们就可以排序了,归并排序(左边的指针为
这是在分治中统计的子问题的答案,跟总答案有怎样的关系呢?容易发现,每个子问题统计的只有跨越分界线的贡献,反过来看,每一个能产生贡献的
算法的大致思路就是这样啦。至于复杂度,
当然还有不少细节问题。
最大的问题就在于,可能有完全相同的元素。这样的话,本来它们相互之间都有贡献,可是cdq的过程中只有左边的能贡献右边的。这可怎么办呢?
我们把序列去重,这样现在就没有相同的了。给现在的每个元素一个权值ans+=v-1。
写法上,为了防止sort和归并排序中空间移动太频繁,没有对每个元素封struct,这样的话就要膜改一下cmp函数(蒟蒻也是第一次发现cmp可以这么写)
蒟蒻还是觉得开区间好写一些吧。。。当然闭区间好理解些。。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define RG register
#define R RG int
using namespace std;
const int N=1e5+9,SZ=2.2e6;
char buf[SZ],*pp=buf-1;//fread必备
int k,a[N],b[N],c[N],p[N],q[N],v[N],cnt[N],ans[N],*e;
inline int in(){
while(*++pp<'-');
R x=*pp&15;
while(*++pp>'-')x=x*10+(*pp&15);
return x;
}
void out(R x){
if(x>9)out(x/10);
*++pp=x%10|'0';
}
inline bool cmp(R x,R y){//直接对数组排序,注意三关键字
return a[x]<a[y]||(a[x]==a[y]&&(b[x]<b[y]||(b[x]==b[y]&&c[x]<c[y])));
}
inline void upd(R i,R v){//树状数组修改
for(;i<=k;i+=i&-i)e[i]+=v;
}
inline int ask(R i){//树状数组查前缀和
R v=0;
for(;i;i-=i&-i)v+=e[i];
return v;
}
void cdq(R*p,R n){//处理一个长度为n的子问题
if(n==1)return;
R m=n>>1,i,j,k;
cdq(p,m);cdq(p+m,n-m);//递归处理
memcpy(q,p,n<<2);//归并排序
for(k=i=0,j=m;i<m&&j<n;++k){
R x=q[i],y=q[j];
if(b[x]<=b[y])upd(c[p[k]=x],v[x]),++i;//左边小,插入
else cnt[y]+=ask(c[p[k]=y]) ,++j;//右边小,算贡献
}
for(;j<n;++j)cnt[q[j]]+=ask(c[q[j]]);//注意此时可能没有完成统计
memcpy(p+k,q+i,(m-i)<<2);
for(--i;~i;--i)upd(c[q[i]],-v[q[i]]);//必须这样还原树状数组,memset是O(n^2)的
}
int main(){
fread(buf,1,SZ,stdin);
R n=in(),i,j;k=in();e=new int[k+9];
for(i=0;i<n;++i)
p[i]=i,a[i]=in(),b[i]=in(),c[i]=in();
sort(p,p+n,cmp);
for(i=1,j=0;i<n;++i){
R x=p[i],y=p[j];++v[y];//模仿unique双指针去重,统计v
if(a[x]^a[y]||b[x]^b[y]||c[x]^c[y])p[++j]=x;
}
++v[p[j++]];
cdq(p,j);
for(i=0;i<j;++i)
ans[cnt[p[i]]+v[p[i]]-1]+=v[p[i]];//答案算好
for(pp=buf-1,i=0;i<n;++i)
out(ans[i]),*++pp='\n';
fwrite(buf,1,pp-buf+1,stdout);
}