题解 P1257 【平面上的最接近点对】

· · 题解

@3A17K巨佬的神仙操作!

我们充分发扬人类智慧:

将所有点全部绕原点旋转同一个角度,然后按 x 坐标排序

根据数学直觉,在随机旋转后,答案中的两个点在数组中肯定不会离得太远

所以我们只取每个点向后的5个点来计算答案

这样速度快得飞起,在 n=1000000 时都可以在1s内卡过

注意旋转θ角时坐标变换

代码如下:

#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=2e5+50;
#define D double
struct spot{
    D a[4];
}p[N];
D x,y,x_,y_,z,w,ans;
int n;
bool mmp(const spot &u,const spot &v){
    return u.a[0]<v.a[0];
}
int main(){
    scanf("%d",&n);
    z=sin(1),w=cos(1);  //旋转1弧度≈57°
    for(int i=1;i<=n;i++){
        scanf("%lf%lf",&x,&y);
        x_=x*w-y*z;
        y_=x*z+y*w;   //计算旋转后的坐标
        p[i].a[0]=x_;
        p[i].a[1]=y_;
        p[i].a[2]=x;
        p[i].a[3]=y;   //存下来
    }
    sort(p+1,p+n+1,mmp);   //排序
    for(int i=n+1;i<=n+10;i++)
    p[i].a[0]=p[i].a[1]=-N-0.01;  //边界处理
    ans=2e9+0.01;  //初始化答案
    for(int i=1;i<=n;i++)
    for(int j=1;j<=5;j++){  //枚举
        x=p[i].a[2];y=p[i].a[3];
        x_=p[i+j].a[2];y_=p[i+j].a[3];
        z=sqrt((x-x_)*(x-x_)+(y-y_)*(y-y_));  //计算距离
        if(ans>z)ans=z;   //更新答案
    }
    printf("%.4lf\n",ans);  //输出
}
/*
x'=xcosθ-ysinθ
y'=xsinθ+ycosθ
*/

人类的智慧是无穷无尽的!