题解:AT_arc114_f [ARC114F] Permutation Division
[ARC114F] Permutation Division 题解
考虑二分不变前缀的长度,判定的时候,如果前缀分为了
同时我们发现,前缀划分后,每段开头形成了一个最长下降子序列(LDS),所以我们可以预处理出
根据
最后计算答案的时候,这个前缀之后的段开头一定是最
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#define int long long
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5 + 10;
int n, m, p[N], tr[N];
void update(int u, int c) {
for(; u; u &= u - 1)
tr[u] = max(tr[u], c);
}
int query(int u) {
int sum = -1e9; for(; u <= n; u += u & -u)
sum = max(tr[u], sum);
return sum;
}
int cnt[N], g[N], f[N];
int check(int mid) {
for(int i = 1; i <= n; i ++) cnt[i] = 0, tr[i] = -1e9;
for(int i = mid + 1; i <= n; i ++)
cnt[p[i]] ++;
for(int i = 1; i <= n; i ++) cnt[i] += cnt[i - 1];
for(int i = 1; i <= mid + 1; i ++) g[i] = -1e9;
update(p[1], 1), f[1] = 1, g[1] = p[1];
for(int i = 2; i <= mid; i ++) {
f[i] = query(p[i]) + 1;
if(f[i] > 0) {
g[f[i]] = max(g[f[i]], p[i]);
update(p[i], f[i]);
}
}
for(int i = mid; i; i --) g[i] = max(g[i], g[i + 1]);
for(int i = mid; i; i --) if(g[i] >= 0 && i + cnt[g[i]] >= m)
return i;
return 0;
}
bool fr[N];
signed main() {
ios::sync_with_stdio(0), cin.tie(0);
cin >> n >> m;
for(int i = 1; i <= n; i ++) cin >> p[i];
int l = 1, r = n, mid, ans = 0;
while(l <= r) {
mid = l + r >> 1;
if(check(mid)) l = mid + 1, ans = mid;
else r = mid - 1;
}
int x = (ans == 0 ? m : cnt[g[check(ans)]]);
for(int i = 1; i <= ans; i ++) cout << p[i] << ' ';
if(ans == n) return 0;
vector<PII> t;
for(int i = ans + 1; i <= n; i ++) t.push_back({p[i], i});
sort(t.begin(), t.end());
int y = t[x - 1].x;
for(int i = ans + 1; i <= n; i ++) fr[i] = (p[i] <= y);
for(int i = x - 1; ~i; i --) {
int j = t[i].y;
while(j + 1 <= n && !fr[j + 1]) j ++;
for(int k = t[i].y; k <= j; k ++) cout << p[k] << ' ';
}
cout << '\n';
return 0;
}