题解:P11495 [ROIR 2019] 两次测量 (Day 1)
lailai0916
·
·
题解
题意简述
给定正整数 l,r,a,计算:
\sum_{i=l}^{r}\sum_{j=i+1}^r[a\mid j-i]
解题思路
\begin{aligned}
\sum_{i=l}^{r}\sum_{j=i+1}^r[a\mid j-i] &= \sum_{d=1}^{r-l} [a \mid d](r-l-d+1) \\
&= \sum_{k=1}^{\left\lfloor\frac{r-l}{a}\right\rfloor}(r-l-ka+1) \\
&= \sum_{k=1}^{\left\lfloor\frac{r-l}{a}\right\rfloor}(r-l+1)-a\sum_{k=1}^{\left\lfloor\frac{r-l}{a}\right\rfloor} k \\
&= \left\lfloor\frac{r-l}{a}\right\rfloor(r-l+1)-a\frac{\left\lfloor\frac{r-l}{a}\right\rfloor(\left\lfloor\frac{r-l}{a}\right\rfloor+1)}{2}
\end{aligned}
参考代码
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
ll l,r,a;
cin>>l>>r>>a;
cout<<((r-l)/a)*(r-l+1)-a*((r-l)/a)*((r-l)/a+1)/2<<'\n';
return 0;
}