树
注意:我认为题解对dp[u][j]理解有误
若dp[u][j]表示以U为根联通块大小为j的最大贡献的话,
最后dp[u][0]为何又要乘以i呢(已经是最大贡献了再乘以该联通块大小)
若dp[u][j]表示以U为根联通块大小为j的最大贡献/j的话,
最后一个方程说通了,那么第一个方程dp[u][j]=max(dp[u][k]*dp[v][j-k])又怎么解释呢,
还有最大贡献/联通块大小的数学意义有是什么?
每个点的平均贡献吗?
那么吧两个联通块平均值乘起来就能得到总联通块的平均点贡献吗?
我认为,dp[u][j]表示以u为根节点,除了包含u的大小为j的联通块之外的其他联通块的最大贡献
dp[u][j]=max(dp[u][k]*dp[v][j-k])表示,
在以u为根节点的树上选走k个后剩余联通块的贡献
dp[u][0]=max(dp[u][j]*j) 并不是表示取0个,
只不过0这一维代替再开一个数组。 它表示整个u树的最大贡献,
因为前面未将dp[u][j]算入,则乘上它的贡献!
例子:合并联通块(A到G,下面简称A)和联通块(c到E,简称C),因为是dfs遍历dp,则在此时dp[A][4]只更新的左子树,右子树还未更新,及dp[A][4]表示H的贡献及为1,dp[C][2]同理为I和F的贡献为1,则dp[A][6]为H,F,I总贡献1,最后A树的贡献为dp[A][6]*6(合并后G到E的贡献为其联通块大小)
最后再注意:高精需开short,否则会MLE
#include <cstdio>
#include <iostream>
#include <cstring>
#define N 700
using namespace std;
int n, eid;
short sz[N+5], head[N+5];
struct Edge
{
int next, to;
}e[2*N+5];
struct bign
{
static const int maxn = 120;
short d[maxn+5];
short len;
void clean() { while(len > 1 && !d[len-1]) len--; }
bign() { memset(d, 0, sizeof(d)); len = 1; }
bign(int num) { *this = num; }
bign(char* num) { *this = num; }
bign operator = (const char* num) {
memset(d, 0, sizeof(d)); len = strlen(num);
for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
clean();
return *this;
}
bign operator = (int num)
{
char s[20]; sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator + (const bign& b)
{
bign c = *this; int i;
for(i = 0; i < b.len; i++)
{
c.d[i] += b.d[i];
if (c.d[i] > 9) c.d[i] %= 10, c.d[i+1]++;
}
while (c.d[i] > 9) c.d[i++] %= 10, c.d[i]++;
c.len = max(len, b.len);
if (c.d[i] && c.len <= i) c.len = i+1;
return c;
}
bign operator - (const bign& b)
{
bign c = *this; int i;
for(i = 0; i < b.len; i++)
{
c.d[i] -= b.d[i];
if (c.d[i] < 0) c.d[i] += 10, c.d[i+1]--;
}
while (c.d[i] < 0) c.d[i++] += 10, c.d[i]--;
c.clean();
return c;
}
bign operator * (const bign& b) const
{
int i, j; bign c; c.len = len + b.len;
for(j = 0; j < b.len; j++)
for(i = 0; i < len; i++)
c.d[i+j] += d[i]*b.d[j];
for(i = 0; i < c.len-1; i++) c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
c.clean();
return c;
}
bign operator / (const bign& b)
{
int i, j;
bign c = *this, a = 0;
for(i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++)
if (a < b*(j+1)) break;
c.d[i] = j;
a = a - b*j;
}
c.clean();
return c;
}
bign operator % (const bign& b)
{
int i, j;
bign a = 0;
for(i = len - 1; i >= 0; i--) {
a = a*10+d[i];
for(j = 0; j < 10; j++) if (a < b*(j+1)) break;
a = a-b*j;
}
return a;
}
bign operator += (const bign& b)
{
*this = *this+b;
return *this;
}
bool operator <(const bign& b) const
{
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
if(d[i] != b.d[i]) return d[i] < b.d[i];
return false;
}
bool operator >(const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b; }
bool operator == (const bign& b) const { return !(b < *this) && !(b > *this); }
string str() const {
char s[maxn] = {};
for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';
return s;
}
}f[N+5][N+5];
istream& operator >> (istream& in, bign& x)
{
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream& out, const bign& x)
{
out << x.str();
return out;
}
void addEdge(int u, int v)
{
e[++eid].next = head[u];
e[eid].to = v;
head[u] = eid;
}
void dp(int u, int fa)
{
sz[u] = 1, f[u][0] = f[u][1] = 1;
for(int i = head[u]; i; i = e[i].next)
{
int v = e[i].to;
if(v == fa) continue;
dp(v, u);
sz[u] += sz[v];
for(int j = sz[u]; j >= 1; --j)
{
for(int k = min(j, sz[u]-sz[v]); k >= max(1, j-sz[v]); --k)
{
f[u][j] = max(f[u][j], f[u][k]*f[v][j-k]);
}
}
}
for(int i = 1; i <= sz[u]; ++i) f[u][0] = max(f[u][0], f[u][i]*i);
}
int main()
{
scanf("%d",&n);
for(int i = 1, x, y; i <= n-1; ++i)
{
scanf("%d %d",&x,&y);
addEdge(x, y);
addEdge(y, x);
}
dp(1, 0);
cout << f[1][0] << endl;
return 0;
}