题解:P2282 [HNOI2003] 历史年份

· · 题解

理论线性的做法

设:f_i 表示在 s[1\dots i] 中,最大的尾段的开头下标g_i 表示在 s[i\dots n] 中,最大的首段的结束下标。我们记 num[i,j]s[i\dots j] 转化为数字后的数值,可以列出 O(n^3) 的转移。

f_i=\max_{j<i,num[j,f_j]<num[j+1,i]}j g_i=\max_{i<j,num[i,j-1]<num[j,g_j]}j

其中字符串比较代价为 O(n),可以用线性后缀数组搭配线性 RMQ 做到 O(n) 预处理,O(1) 查询。

发现 f 的转移形如后缀取 \max,可以做到 O(n),而 g 的转移则是从后转移到向前相邻的一段区间,似乎只能使用数据结构进行维护。但是,打表或是分析发现,g 的值从后往前单调递减,可以使用双指针维护,只需要在区间左端点左侧扣去这个值即可。

这份代码是 O(n\log{n}) 的。

#include<bits/stdc++.h>
using namespace std;
const int N=2e3+3;
namespace SA{
int sa[N],A[N],B[N],c[N],rk[N],hgt[N],f[22][N];
template<class T>
void SA(const T &s){
    int n=s.size()-1,m=*max_element(s.begin(),s.end());
    fill_n(c+1,m,0);
    for(int i=1;i<=n;++i)++c[A[i]=s[i]];
    for(int i=2;i<=m;++i)c[i]+=c[i-1];
    for(int i=n;i;--i)sa[c[A[i]]--]=i;
    for(int j=1;j<=n;j<<=1){
        int cnt=0;
        for(int i=n-j+1;i<=n;++i)B[++cnt]=i;
        for(int i=1;i<=n;++i)if(sa[i]>j)B[++cnt]=sa[i]-j;
        fill_n(c+1,m,0);
        for(int i=1;i<=n;++i)++c[A[i]];
        for(int i=2;i<=m;++i)c[i]+=c[i-1];
        for(int i=n;i;--i)sa[c[A[B[i]]]--]=B[i];
        copy(A+1,A+1+n,B+1);m=0;
        for(int i=1;i<=n;++i)
            A[sa[i]]=(m+=B[sa[i]]!=B[sa[i-1]]||B[sa[i]+j]!=B[sa[i-1]+j]);
        if(n==m)break;
    }
    for(int i=1;i<=n;++i)rk[sa[i]]=i;
    for(int i=1,k=0;i<=n;++i){
        if(rk[i]==1)continue;
        if(k)--k;
        int j=sa[rk[i]-1];
        while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])++k;
        hgt[rk[i]]=k;
    }
    for(int i=1;i<=n;++i)f[0][i]=hgt[i];
    for(int j=1;1<<j<=n;++j)
        for(int i=1;i+(1<<j)-1<=n;++i)
            f[j][i]=min(f[j-1][i],f[j-1][i+(1<<j-1)]);
}
int ask(int x,int y){
    if(x==y)return x;
    if((x=rk[x])>(y=rk[y]))swap(x,y);
    int k=__lg(y-x);
    return min(f[k][x+1],f[k][y-(1<<k)+1]);
}
}
int n;
string s;
int R[N],f[N],g[N],mx[N],L[N];
bool vis[N];
vector<int>tmp[N];
bool cmp(int x,int y,int u,int v){
    x=R[x];u=R[u];
    if(!u)return 0;
    int l1=y-x+1,l2=v-u+1;
    if(l1!=l2)return l1<l2;
    int lcp=SA::ask(x,u);
    if(lcp>=l1)return 0;
    return s[x+lcp]<s[u+lcp];
}
void solve(){
    n=s.size();
    if(count(s.begin(),s.end(),'0')==n){
        printf("%s\n",s.c_str());
        return;
    }
    s="#"+s;SA::SA(s);R[n+1]=0;
    for(int i=1;i<=n;++i){
        L[i]=L[i-1];
        if(s[i]!='0')L[i]=i;
    }
    for(int i=n;i;--i){
        R[i]=R[i+1];
        if(s[i]!='0')R[i]=i;
        f[i]=1;g[i]=mx[i]=vis[i]=0;
        tmp[i].clear();
    }
    for(int i=1,pre=0;i<=n;++i){
        pre=max(pre,mx[i]);f[i]=pre+1;
        int l=R[i+1],r=l+i-R[f[i]];
        if(!l||r>n)continue;
        if(cmp(f[i],i,l,r))
            if(l==r)mx[i+1]=max(mx[i+1],i);
            else mx[r]=max(mx[r],i);
        else mx[r+1]=max(mx[r+1],i);
    }
    int now=f[n];
    auto cg=[&](int i,int k){
        g[i]=k;int l=max(1,min(i-(g[i]-min(R[i],g[i])),L[i-1]));
        if(cmp(l,i-1,i,k-1))l=L[l-1];
        if(l)tmp[l].push_back(i);
    };
    do cg(now--,n+1);while(now&&s[now]=='0');
    for(int i=now,mx=f[n];i;--i){
        for(auto x:tmp[i])vis[x]=1;
        while(vis[mx])--mx;cg(i,mx);
    }
    for(int x=1;x<=n;x=g[x],printf("%c","\n,"[x<=n]))
        for(int i=x;i<g[x];++i)
            printf("%c",s[i]);
}
int main(){
    int u,v,w,x,y,z;
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    for(;cin>>s;)solve();
    return 0;
}

给出用各处板子拼出来的 O(n) 做法,常数有点大,因此没有跑过上面的代码。

#include<bits/stdc++.h>
using namespace std;
const int N=2e3+3;
namespace SA{
namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}
const int MAXN=2e6+3;
const int MAXM=22;
struct RMQ {
  int N, A[MAXN];
  int blockSize;
  int S[MAXN][MAXM], Pow[MAXM], Log[MAXN];
  int Belong[MAXN], Pos[MAXN];
  int Pre[MAXN], Sub[MAXN];
  int F[MAXN];

  void buildST() {
    int cur = 0, id = 1;
    Pos[0] = -1;
    for (int i = 1; i <= N; ++i) {
      S[id][0] = max(S[id][0], A[i]);
      Belong[i] = id;
      if (Belong[i - 1] != Belong[i])
        Pos[i] = 0;
      else
        Pos[i] = Pos[i - 1] + 1;
      if (++cur == blockSize) {
        cur = 0;
        ++id;
      }
    }
    if (N % blockSize == 0) --id;
    Pow[0] = 1;
    for (int i = 1; i < MAXM; ++i) Pow[i] = Pow[i - 1] * 2;
    for (int i = 2; i <= id; ++i) Log[i] = Log[i / 2] + 1;
    for (int i = 1; i <= Log[id]; ++i) {
      for (int j = 1; j + Pow[i] - 1 <= id; ++j) {
        S[j][i] = std::max(S[j][i - 1], S[j + Pow[i - 1]][i - 1]);
      }
    }
  }

  void buildSubPre() {
    Sub[N+1]=0;
    for (int i = 1; i <= N; ++i) {
      if (Belong[i] != Belong[i - 1])
        Pre[i] = A[i];
      else
        Pre[i] = std::max(Pre[i - 1], A[i]);
    }
    for (int i = N; i >= 1; --i) {
      if (Belong[i] != Belong[i + 1])
        Sub[i] = A[i];
      else
        Sub[i] = std::max(Sub[i + 1], A[i]);
    }
  }

  void buildBlock() {
    static int S[MAXN], top;
    top=0;
    for (int i = 1; i <= N; ++i) {
      if (Belong[i] != Belong[i - 1])
        top = 0;
      else
        F[i] = F[i - 1];
      while (top > 0 && A[S[top]] <= A[i]) F[i] &= ~(1 << Pos[S[top--]]);
      S[++top] = i;
      F[i] |= (1 << Pos[i]);
    }
  }

  void init() {
    for(int i=1;i<=N;++i)S[i][0]=0;
    blockSize = log2(N) * 1.5;
    buildST();
    buildSubPre();
    buildBlock();
  }

  int queryMax(int l, int r) {
    int bl = Belong[l], br = Belong[r];
    if (bl != br) {
      int ans1 = 0;
      if (br - bl > 1) {
        int p = Log[br - bl - 1];
        ans1 = std::max(S[bl + 1][p], S[br - Pow[p]][p]);
      }
      int ans2 = std::max(Sub[l], Pre[r]);
      return std::max(ans1, ans2);
    } else {
      return A[l + __builtin_ctz(F[r] >> Pos[l])];
    }
  }
} R;

int rk[N];
const int INF=0x3f3f3f3f;
void SA(const string &s){
    auto sa=atcoder::suffix_array(s);
    auto hgt=atcoder::lcp_array(s,sa);
    int n=s.size();R.N=n+1;
    for(int i=1;i<=n;++i)rk[sa[i-1]+1]=i;
    for(int i=2;i<=n;++i)R.A[i]=INF-hgt[i-2];
    R.A[1]=0;R.A[n+1]=0;R.init();
}
int ask(int x,int y){
    if(x==y)return x;
    if((x=rk[x])>(y=rk[y]))swap(x,y);
    return INF-R.queryMax(x+1,y);
}
}int n;
string s;
int R[N],f[N],g[N],mx[N],L[N];
bool vis[N];
vector<int>tmp[N];
bool cmp(int x,int y,int u,int v){
    x=R[x];u=R[u];
    if(!u)return 0;
    int l1=y-x+1,l2=v-u+1;
    if(l1!=l2)return l1<l2;
    int lcp=SA::ask(x,u);
    if(lcp>=l1)return 0;
    return s[x+lcp]<s[u+lcp];
}
void solve(){
    n=s.size();
    if(count(s.begin(),s.end(),'0')==n){
        printf("%s\n",s.c_str());
        return;
    }
    SA::SA(s);s="#"+s;R[n+1]=0;
    for(int i=1;i<=n;++i){
        L[i]=L[i-1];
        if(s[i]!='0')L[i]=i;
    }
    for(int i=n;i;--i){
        R[i]=R[i+1];
        if(s[i]!='0')R[i]=i;
        f[i]=1;g[i]=mx[i]=vis[i]=0;
        tmp[i].clear();
    }
    for(int i=1,pre=0;i<=n;++i){
        pre=max(pre,mx[i]);f[i]=pre+1;
        int l=R[i+1],r=l+i-R[f[i]];
        if(!l||r>n)continue;
        if(cmp(f[i],i,l,r))
            if(l==r)mx[i+1]=max(mx[i+1],i);
            else mx[r]=max(mx[r],i);
        else mx[r+1]=max(mx[r+1],i);
    }
    int now=f[n];
    auto cg=[&](int i,int k){
        g[i]=k;int l=max(1,min(i-(g[i]-min(R[i],g[i])),L[i-1]));
        if(cmp(l,i-1,i,k-1))l=L[l-1];
        if(l)tmp[l].push_back(i);
    };
    do cg(now--,n+1);while(now&&s[now]=='0');
    for(int i=now,mx=f[n];i;--i){
        for(auto x:tmp[i])vis[x]=1;
        while(vis[mx])--mx;cg(i,mx);
    }
    for(int x=1;x<=n;x=g[x],printf("%c","\n,"[x<=n]))
        for(int i=x;i<g[x];++i)
            printf("%c",s[i]);
}
int main(){
    int u,v,w,x,y,z;
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    for(;cin>>s;)solve();
    return 0;
}