题解 P6034 【Ryoku 与最初之人笔记】
一般情况下,看到
设
比如本题,采用以上换元,我们可以得到:
由于
因此,我们枚举
所以答案为
记
#include<cstdio>
#include<iostream>
#include<fstream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define Set(a) memset(a,0,sizeof(a))
#define F(i,a,b) for(register int i=a,i##end=b;i<=i##end;++i)
#define UF(i,a,b) for(register int i=a,i##end=b;i>=i##end;--i)
#define openf(a) freopen(#a".in","r",stdin);freopen(#a".out","w",stdout)
#define re register
#define ri re int
#define il inline
typedef long long ll;
typedef unsigned long long ull;
template<typename T> inline T rd(T& x)
{
T f=1;x=0;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(T)(c-'0');
x*=f;
return x;
}
ll rd(){ll x;rd(x);return x;}
inline int max(int a,int b){return a>b?a:b;}
inline int min(int a,int b){return a<b?a:b;}
const int inf=1<<30;
const ll p=1000000007;
ll p2[70];
ll mod(ll t){return t>=p?t-p:t;}
int bitc(ll x){int ans=0;while(x)x&=x-1,++ans;return ans;}
ll f(ll n){return p2[bitc(n)];}
ll sum(ll n)
{
if(n==0) return 0;
if(n&1) return mod(sum(n^1)+f(n));
ll t=sum((n>>1)-1);
return (3*t+f(n>>1)+2)%p;
}
int main()
{
p2[0]=1;F(i,1,64) p2[i]=mod(2*p2[i-1]);
ll n;
cin>>n;
cout<<((sum(n)-n)%p+p)%p<<endl;
return 0;
}