题解 P3092 【[USACO13NOV]没有找零No Change】
jun1lesszZZ · · 题解
状压DP + 二分
考虑构成:
考虑状态:数组
考虑转移:使用当前硬币的状态一定由使用上一个硬币的状态转移而来
举个例子:
-
之前状态
x :dp[x] = y ,i = 2 = (010)_2 -
当前枚举到的状态
i = 3 = (011)_2 ,dp[i] = (dp[x] + 1 开始能买到哪里(<=n)) , 相当于状态x 能购买到y 号物品,i 要从y+1 号开始购买 -
-
状态转移完成
考虑具体做法:外层循环枚举所有状态,内层循环枚举每一位,若当前状态
然后可以进行枚举
因为一种状态可以被更新多次,所以要取
如果到第
如果
时间复杂度
考虑优化:发现每次枚举物品统计价值来检查是否能够购买是冗余操作,可以用前缀和预处理一下,然后每次检查的时候进行一次二分就可以了
时间复杂度
考虑正确性:因为外层循环枚举状态是从小到大枚举,所以保证当前状态某一位少
注意事项:
1.不要错误理解题意,注意每次支付只能支付一枚硬币 ,不能算把硬币凑出来的总钱数然后判断能购买多少,这种错误做法能拿到
2.二分的时候注意初始的左端点,因为从使用当前硬币的状态转移过来,所以要从使用当前硬币前状态所能购买到的物品
3.因为二分时要检查的值要与前缀和数组进行比较,所以比较时前缀和数组应该减去左端点之前的前缀
4.注意二分的边界问题以及最后的返回值
代码:
#include <cstdio>
#include <cctype>
#define min(a, b) a < b ? a : b
#define MAXN 100001
#define N 17
int n, m, tot_money, ans = 2147483647;
int dp[1 << N], f[1 << N], sum[MAXN], pay[MAXN], coin[MAXN];
inline int read() {
int s = 1, w = 0; char ch = getchar();
for(; ! isdigit(ch); ch = getchar()) if(ch == '-') s = -1;
for(; isdigit(ch); ch = getchar()) w = w * 10 + ch - '0';
return s * w;
}
inline int check(int x, int cha) {
int l = cha, r = n, mid;
while(l <= r) {
mid = (l + r) >> 1;
if(sum[mid] - sum[cha - 1] == x) return mid;
if(sum[mid] - sum[cha - 1] < x) l = mid + 1;
else r = mid - 1;
}
return r;
}
int main() {
m = read(), n = read();
for(int i = 1; i <= m; i ++) coin[i] = read(), tot_money += coin[i];
for(int i = 1; i <= n; i ++) pay[i] = read(), sum[i] = sum[i - 1] + pay[i];
for(int i = 1; i < (1 << m); i ++) {
for(int j = 0; j < m; j ++) if(i & (1 << j)) {
int x = (i ^ (1 << j)), sum;
if((sum = check(coin[j + 1], dp[x] + 1)) > dp[i])
dp[i] = sum, f[i] = f[x] + coin[j + 1];
if(dp[i] == n) ans = min(f[i], ans);
}
}
printf("%d", (tot_money - ans) < 0 ? -1 : tot_money - ans);
return 0;
}