题解 P1436 【棋盘分割】
Arcturus1350 · · 题解
其实呢大致思路和下面的大佬们都很像。
发这篇题解的目的就是加了一点优化骗分技巧。
转移方程:
设
\sum_{k=1}^{n}
开始更新,有:(一口气读完这个方程)
∑_{i=1}^{8}∑_{j=1}^{8}∑_{x=1}^{8}∑_{y=1}^{8}
dp[i][j][x][y][k]=
min(
min(dp[i][j][x][a][k-1]+dp[i][a+1][x][y][0],dp[i][j][x][a][0]+dp[i][a+1][x][y][k-1]),
min(dp[i][j][b][y][k-1]+dp[b+1][j][x][y][0],dp[i][j][b][y][0]+dp[b+1][j][x][y][k-1])
);
但是。
别以为推出了方程就万事大吉了!!!
您的边界条件呢(这题很简单)。
但是这题的初始化是重点!!!重点!!!重点!!!
好几篇都是6重循环暴力算的。
本宝宝:前缀和先求出来就好了。
那么好,初始化的话是要把所有左上为三两个循环呢。。。
上代码(码风不好请原谅)
//by Su Qingnian
//QAQ
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n;//n是总共切的刀数
int map[9][9];//存图,价值
int sum[9][9];//前缀和数组
int dp[9][9][9][9][15];//dp暴力数组
inline void add(int i,int j)
{
//这个函数是计算前缀和数组。左上(1,1)右下(i,j)的价值
//好好想想为什么。(扩展这个点时左边矩形+右边矩形-重叠的部分+这个点的价值)
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+map[i][j];
return ;
}
inline int s(int x1,int y1,int x2,int y2)
{
//这个是用来计算左上(x1,y1)右下(x2,y2)的价值
//还是容斥原理
int now=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];
return now;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=8;i++)
for(int j=1;j<=8;j++)
scanf("%d",&map[i][j]),
add(i,j);//输入,处理前缀和
//debug
// for(int i=1;i<=8;i++,puts(""))
// for(int j=1;j<=8;j++)
// printf("%-5d ",sum[i][j]);
//处理切0刀时各矩形价值的平方
for(int i=1;i<=8;i++)
for(int j=1;j<=8;j++)
for(int x=i;x<=8;x++)
for(int y=j;y<=8;y++)
dp[i][j][x][y][0]+=s(i,j,x,y),
dp[i][j][x][y][0]*=dp[i][j][x][y][0];
//dp过程,深吸一口气读完这一面方程。
for(int k=1;k<n;k++)
for(int i=1;i<=8;i++)
for(int j=1;j<=8;j++)
for(int x=i;x<=8;x++)
for(int y=j;y<=8;y++)
{
int minn=0x3f3f3f3f;
for(int a=j;a<y;a++)
minn=min(minn,min(dp[i][j][x][a][k-1]+dp[i][a+1][x][y][0],dp[i][j][x][a][0]+dp[i][a+1][x][y][k-1]));
for(int b=i;b<x;b++)
minn=min(minn,min(dp[i][j][b][y][k-1]+dp[b+1][j][x][y][0],dp[i][j][b][y][0]+dp[b+1][j][x][y][k-1]));
dp[i][j][x][y][k]=minn;
}
printf("%d",dp[1][1][8][8][n-1]);
//输出,程序拜拜。
return 0;
}