题解 P1646 【[国家集训队]happiness】

· · 题解

\Large\texttt{My Blog}

Description

题目链接:Luogu 1646

高一一班的座位表是个 n\times m 的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。

作为计算机竞赛教练的 scp 大老板,想知道如何分配可以使得全班的喜悦值总和最大。

数据范围:1\le n,m\le 100,喜悦值均为小于等于 5000 的非负整数。

Solution

考虑用网络流求解,总量减去最小割即为答案。

对于每个点 (i,j),从 s 连一条容量为选择文科的边,到 t 连一条容量位选择理科的边。

对于 (i,j)(i+1,j) 两个点的组合情况。假设这两个点同时选文科有 w 的喜悦值,我们新建一个节点 x,从 sx 连一条容量为喜悦值 w 的边,再从 x(i,j)(i+1,j) 分别连一条容量为 \texttt{INF} 的边。对于左右前后、文科理科同理!

考虑这样做法的正确性:每个点自然只能选择一个科目(文科或理科),当某个点选择了文科 s,那么它向理科 t 的边都应该要被断开。考虑哪些边会被断开:首先是它直接连向 t 的边,其次是它和别的点组合连向 t 的边,这样一来,这些边在网络图的中是有贡献的,意味着这些边的容量在答案中没有贡献,正确性证明完毕。

时间复杂度O((nm)^3)\texttt{Dinic}

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define FOR(i,a,b) for(int i=a;i<=b;++i)

const int N=1e5+5,M=5e6+5;
const int inf=1<<30;
int n,m,tot=1,lnk[N],ter[M],nxt[M],val[M],dep[N],cnr[N];

int id(int x,int y) {
    return (x-1)*m+y;
}
void add(int u,int v,int w) {
    ter[++tot]=v,nxt[tot]=lnk[u],lnk[u]=tot,val[tot]=w;
}
void addedge(int u,int v,int w) {
    add(u,v,w),add(v,u,0);
}
int bfs(int s,int t) {
    memset(dep,0,sizeof(dep));
    memcpy(cnr,lnk,sizeof(lnk));
    std::queue<int> q;
    q.push(s),dep[s]=1;
    while(!q.empty()) {
        int u=q.front(); q.pop();
        for(int i=lnk[u];i;i=nxt[i]) {
            int v=ter[i];
            if(val[i]&&!dep[v]) q.push(v),dep[v]=dep[u]+1;
        }
    }
    return dep[t];
}
int dfs(int u,int t,int flow) {
    if(u==t) return flow;
    int ans=0;
    for(int i=cnr[u];i&&ans<flow;i=nxt[i]) {
        cnr[u]=i;
        int v=ter[i];
        if(val[i]&&dep[v]==dep[u]+1) {
            int x=dfs(v,t,std::min(val[i],flow-ans));
            if(x) val[i]-=x,val[i^1]+=x,ans+=x;
        }
    }
    if(ans<flow) dep[u]=-1;
    return ans;
}
int dinic(int s,int t) {
    int ans=0;
    while(bfs(s,t)) {
        int x;
        while((x=dfs(s,t,inf))) ans+=x;
    }
    return ans;
}
int main() {
    scanf("%d%d",&n,&m);
    int s=0,t=n*m+2*n*(m-1)+2*(n-1)*m+1,cnt=n*m;
    int ans=0;
    FOR(i,1,n) FOR(j,1,m) {
        int x;
        scanf("%d",&x),ans+=x;
        addedge(s,id(i,j),x);
    }
    FOR(i,1,n) FOR(j,1,m) {
        int x;
        scanf("%d",&x),ans+=x;
        addedge(id(i,j),t,x);
    }
    FOR(i,1,n-1) FOR(j,1,m) {
        int x;
        scanf("%d",&x),ans+=x;
        addedge(s,++cnt,x);
        addedge(cnt,id(i,j),inf);
        addedge(cnt,id(i+1,j),inf);
    }
    FOR(i,1,n-1) FOR(j,1,m) {
        int x;
        scanf("%d",&x),ans+=x;
        addedge(++cnt,t,x);
        addedge(id(i,j),cnt,inf);
        addedge(id(i+1,j),cnt,inf);
    }
    FOR(i,1,n) FOR(j,1,m-1) {
        int x;
        scanf("%d",&x),ans+=x;
        addedge(s,++cnt,x);
        addedge(cnt,id(i,j),inf);
        addedge(cnt,id(i,j+1),inf);
    }
    FOR(i,1,n) FOR(j,1,m-1) {
        int x;
        scanf("%d",&x),ans+=x;
        addedge(++cnt,t,x);
        addedge(id(i,j),cnt,inf);
        addedge(id(i,j+1),cnt,inf);
    }
    printf("%d\n",ans-dinic(s,t));
    return 0;
}