题解:CF2134E Power Boxes
首先考虑出在什么情况下在位置
剩下考虑形如
特别的,考虑
最后来证明操作数不超过
证明
如上所述,\texttt{throw x} 在每个位置上操作有且仅有1 次。若f_{x + 1} \neq f_{x + 2} ,则不需要进行\texttt{swap x} 操作,否则必然有f_{x - 1} \neq f_x 。因此\texttt{swap x} \le \lceil \frac{n}{2} \rceil 。命题得证。
写的时候需要注意,在
代码如下:
#include <bits/stdc++.h>
#define pii pair <int,int>
#define init(x) memset (x,0,sizeof (x))
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
using namespace std;
const int MAX = 1e5 + 5;
const int MOD = 1e9 + 7;
inline int read ();
int query (string op,int x)
{
cout<<op<<" "<<x<<endl;fflush (stdout);
if (op == "throw") return read ();
else return -1;
}
void solve ()
{
int n = read ();
vector <int> ans (n + 1),f (n + 3,0),d (n + 1);
for (int i = n;i;--i)
{
if (f[i + 1] != f[i + 2])
{
f[i] = query ("throw",i);
ans[i] = d[i] = 1 + (f[i] != f[i + 1] + 1);
}
else f[i] = f[i + 1] + 1;
}
for (int i = n;i;--i)
{
if (ans[i])
{
f[i] = f[i + d[i]] + 1;
continue;
}
if (f[i + 1] != f[i + 2])
{
f[i] = query ("throw",i);
ans[i] = d[i] = 1 + (f[i] != f[i + 1] + 1);
continue;
}
f[i] = f[i + 1] + 1;
if (i == 1)
{
int x = query ("swap",1);
if (f[2] + 1 == query ("throw",2)) ans[1] = 1;
else ans[1] = 2;
}
else
{
int x = query ("swap",i - 1);
f[i] = query ("throw",i - 1);
ans[i] = d[i] = 1 + (f[i] == f[i + 1] + 1);
swap (f[i - 1],f[i]);swap (d[i - 1],d[i]);
f[i] = f[i + ans[i]] + 1;
}
}
cout<<"! ";
for (int i = 1;i <= n;++i) cout<<ans[i]<<" \n"[i == n];
fflush (stdout);
}
int main ()
{
int t = read ();
while (t--) solve ();
return 0;
}
inline int read ()
{
int s = 0;int f = 1;
char ch = getchar ();
while ((ch < '0' || ch > '9') && ch != EOF)
{
if (ch == '-') f = -1;
ch = getchar ();
}
while (ch >= '0' && ch <= '9')
{
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * f;
}