题解 CF1290F Making Shapes
Codeforces 题面传送门 & 洛谷题面传送门
数位 dp 好题。
首先,由于是凸包,一但向量集合确定,凸包的形态肯定就已经确定了。考虑什么样的向量集合能够组成符合条件的凸包,我们假设第
-
\sum\limits_{x_i>0}c_ix_i=\sum\limits_{x_i<0}c_i(-x_i),\sum\limits_{y_i>0}c_iy_i=\sum\limits_{y_i<0}c_i(-y_i) -
\sum\limits_{x_i<0}c_i(-x_i)\le m,\sum\limits_{y_i<0}c_i(-y_i)\le m
接下来思考怎样求符合条件的
复杂度
总结:看到求
const int MOD=998244353;
int n,m,x[7],y[7],dp[34][23][23][23][23][2][2];
void add(int &x,int v){((x+=v)>=MOD)&&(x-=MOD);}
int chk(int dm,int dn,int ori){
if(dm^dn) return (dn<dm)?0:1;
return ori;
}
int calc(int p,int ps_x,int ps_y,int ng_x,int ng_y,int xm,int ym){
if(p==30) return (!ps_x&&!ps_y&&!ng_x&&!ng_y&&!xm&&!ym);
if(~dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym]) return dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym];
int d=m>>p&1;dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym]=0;
for(int s=0;s<(1<<n);s++){
int tps_x=ps_x,tps_y=ps_y,tng_x=ng_x,tng_y=ng_y;
for(int i=1;i<=n;i++) if(s>>(i-1)&1){
(x[i]>0)?(tps_x+=x[i]):(tng_x-=x[i]);
(y[i]>0)?(tps_y+=y[i]):(tng_y-=y[i]);
} int d_px=tps_x&1,d_py=tps_y&1,d_nx=tng_x&1,d_ny=tng_y&1;
if(d_px==d_nx&&d_py==d_ny)
add(dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym],
calc(p+1,tps_x>>1,tps_y>>1,tng_x>>1,tng_y>>1,chk(d,d_px,xm),chk(d,d_py,ym)));
} return dp[p][ps_x][ps_y][ng_x][ng_y][xm][ym];
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
memset(dp,-1,sizeof(dp));
printf("%d\n",(calc(0,0,0,0,0,0,0)-1+MOD)%MOD);
return 0;
}