对于非零整数 a 和整数 b,若存在整数 q,使得 b = aq,则称 a \mid b,读作 a 整除 b。
性质
传递性
若 a \mid b,b \mid c,则 a \mid c。
::::success[证明]{open}
\because a \mid b, b \mid c
\therefore \exists p, q \in \Z, b = ap, c = bq
\therefore c = bq = apq = a(pq), pq \in \Z
\therefore a \mid c
::::
可加减性
若 a \mid b,a \mid c,则 a \mid b \pm c。
::::success[证明]{open}
\because a \mid b, a \mid c
\therefore \exists p, q \in \Z, b = ap, c = aq
\therefore p \pm c = ap \pm aq = a(p \pm q), p \pm q \in \Z
\therefore a \mid b \pm c
::::
可乘性
若 a \mid b,c \mid d,则 ac \mid bd。
::::success[证明]{open}
\because a \mid b, c \mid d
\therefore \exists p, q \in \Z, b = ap, d = cq
\therefore bd = (ac)(pq), pq \in \Z
\therefore ac \mid bd
::::
线性性质
这里的线性不是线性 DP 求最长上升子序列
若 a \mid b,a \mid c,则 \forall x, y \in \Z, a \mid bx \pm cy。
::::success[证明]{open}
\because a \mid b, 1 \mid x
\therefore a \mid bx
同理
a \mid cy
\therefore a \mid bx + cy
::::
可消性
若 ma \mid mb,则 a \mid b。
::::success[证明]{open}
\because ma \mid mb
\therefore \exists p \in \Z, mb = map
b = ap
\therefore a \mid b
::::
性质 6
连续 n 个数中有且仅有一个数被 n 整除。
::::success[证明]{open}
设 n 个数为
a - n + 1, a - n + 2, \cdots, a
令
q = \left[\frac{a}{n}\right]
\therefore q \le \frac{a}{n} < q + 1
\therefore a - n < nq \le a
\therefore a - n + 1 \le nq \le a
\therefore nq \in \{a - n + 1, a - n + 2, \cdots, a\}
又
1 \mid q, n \mid n
\therefore n \mid nq
若 \exists -n < i < j < 0, n \mid (a + i), (a + j)
\therefore a \mid j - i
j - i > n
矛盾,\therefore 连续 n 个数中有且仅有一个数被 n 整除。
::::
性质 7
::::success[证明]{open}
设 $n$ 个数为
$$
a, a + 1, \cdots, a + n - 1
$$
---
若 $0 < a
\therefore n! \times C_{a + n - 1}^{n} = a(a + 1) \cdots (a + n - 1)
而 C_{a + n - 1}^{n} \in \Z
\therefore n! \mid a(a + 1) \cdots (a + n - 1)
若 a \le 0 \le a + n - 1
\therefore n! \mid a(a + 1) \cdots (a + n - 1) = 0
若 a + n - 1 < 0
令 b = -(a + n - 1)
\therefore b(b + 1) \cdots (b + n - 1) = (-1)^n \cdot a(a + 1) \cdots (a + n - 1)
\therefore n \mid b(b + 1) \cdots (b + n - 1), 1 \mid (-1)^n
\therefore n \mid a(a + 1) \cdots (a + n - 1)
::::info[题目]{open}
设 a, b, c, d \in \N,且满足 ad - bc > 1,求证:a, b, c, d 中至少有一个数不能被 ad - bc 整除。
::::
考虑反证,假设全部能被 ad - bc 整除,能够推出 (ad - bc)^2 \mid (ad - bc),通过可消性得到 ad - bc \mid 1,即 ad - bc \le 1,矛盾。
::::success[完整解答]{open}
若 ad - bc \mid a, b, c, d
\therefore (ad - bc)^2 \mid ad, bc
\therefore (ad - bc)^2 \mid (ad - bc)
又
ad - bc \ne 0
\therefore ad - bc \mid 1
\therefore ad - bc \le 1
矛盾
\therefore a, b, c, d \text{ 中至少有一个数不能被 } ad - bc \text{ 整除。}