CF1439D INOI Final Contests
Rainbow_qwq · · 题解
- CF1439D INOI Final Contests
设
如何转移?发现若
发现写出转移时还需要用到方案数,于是设
于是,对于
对于
那么对于
如何转化为子问题?
可以枚举最后一个人坐下的位置,设为
方案数:最后一个人可以是这个位置的两个方向,其余位置的一个方向,
答案:设
其他贡献:
昨天口胡了一下,今天来补代码:
#include<bits/stdc++.h>
#define For(i,a,b) for(register int i=(a);i<=(b);++i)
#define Rep(i,a,b) for(register int i=(a);i>=(b);--i)
using namespace std;
inline int read()
{
char c=getchar();int x=0;bool f=0;
for(;!isdigit(c);c=getchar())f^=!(c^45);
for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
if(f)x=-x;return x;
}
#define fi first
#define se second
#define mkp make_pair
#define pb push_back
typedef pair<int,int>pii;
int mod;
struct modint{
int x;
modint(int o=0){x=o;}
modint &operator = (int o){return x=o,*this;}
modint &operator +=(modint o){return x=x+o.x>=mod?x+o.x-mod:x+o.x,*this;}
modint &operator -=(modint o){return x=x-o.x<0?x-o.x+mod:x-o.x,*this;}
modint &operator *=(modint o){return x=1ll*x*o.x%mod,*this;}
modint &operator ^=(int b){
modint a=*this,c=1;
for(;b;b>>=1,a*=a)if(b&1)c*=a;
return x=c.x,*this;
}
modint &operator /=(modint o){return *this *=o^=mod-2;}
modint &operator +=(int o){return x=x+o>=mod?x+o-mod:x+o,*this;}
modint &operator -=(int o){return x=x-o<0?x-o+mod:x-o,*this;}
modint &operator *=(int o){return x=1ll*x*o%mod,*this;}
modint &operator /=(int o){return *this *= ((modint(o))^=mod-2);}
template<class I>friend modint operator +(modint a,I b){return a+=b;}
template<class I>friend modint operator -(modint a,I b){return a-=b;}
template<class I>friend modint operator *(modint a,I b){return a*=b;}
template<class I>friend modint operator /(modint a,I b){return a/=b;}
friend modint operator ^(modint a,int b){return a^=b;}
friend bool operator ==(modint a,int b){return a.x==b;}
friend bool operator !=(modint a,int b){return a.x!=b;}
bool operator ! () {return !x;}
modint operator - () {return x?mod-x:0;}
};
#define maxn 505
int n,m;
modint fac[maxn],ifac[maxn];
modint f[maxn][maxn],g[maxn][maxn];
bool vf[maxn][maxn],vg[maxn][maxn];
inline void prework(int n){
fac[0]=1;
For(i,1,n)fac[i]=fac[i-1]*i;
ifac[n]=1/fac[n];
Rep(i,n-1,0)ifac[i]=ifac[i+1]*(i+1);
}
inline modint C(int n,int m){return fac[n]*ifac[m]*ifac[n-m];}
modint F(int i,int j);
modint G(int i,int j);
inline modint sum(int x){return 1ll*x*(x+1)/2%mod;}
modint F(int i,int j)
{
if(vf[i][j])return f[i][j];
vf[i][j]=1,f[i][j]=0;
if(i==j){
For(k,1,i)
f[i][i]+=C(i-1,k-1)*(i+1)*(G(k-1,k-1)*F(i-k,i-k)+G(i-k,i-k)*F(k-1,k-1)),
f[i][i]+=C(i-1,k-1)*G(k-1,k-1)*G(i-k,i-k)*(sum(k-1)+sum(i-k));
return f[i][i];
}
f[i][j]=F(i-1,j);
For(k,1,j)
f[i][j]+=C(j,k)*(F(i-k-1,j-k)*G(k,k)+F(k,k)*G(i-k-1,j-k));
return f[i][j];
}
modint G(int i,int j)
{
if(vg[i][j])return g[i][j];
vg[i][j]=1,g[i][j]=0;
if(i==j){
if(!i)return g[i][i]=1;
For(k,1,i)
g[i][i]+=G(k-1,k-1)*G(i-k,i-k)*C(i-1,k-1);
g[i][i]*=(i+1);
return g[i][i];
}
g[i][j]=G(i-1,j);
For(k,1,j)
g[i][j]+=G(i-k-1,j-k)*G(k,k)*C(j,k);
return g[i][j];
}
signed main()
{
n=read(),m=read(),mod=read(),prework(501);
cout<<F(n,m).x<<endl;
return 0;
}