P2174 小Z的神奇数列 堆 逆元
这里讲一下堆的在线做法。
维护四个堆,两个大根堆两个小根堆,分别记为
每次删除操作就把要删除的那个数丢进
这样前三个操作就没了
第4个操作就是一个快速幂。
主要是操作5。
由于毒瘤出题人给的模数不是质数,求逆元必须用
Code:
#include <algorithm>
#include <tuple>
#include <bitset>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
#define inl inline
#define re register int
#define fa(x) t[x].fa
#define ls(x) t[x].child[0]
#define rs(x) t[x].child[1]
#define ll long long
const int inf = 0x3f3f3f3f;
#define lowbit(x) ((x) & (-x))
using namespace std;
template <class Read>
inl Read read() {
Read x = 0;
register bool w = 0;
register char c = getchar();
while (c > '9' || c < '0') {
if (c == '-') w = 1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = (x << 3) + (x << 1) + (c ^ 48);
c = getchar();
}
return w ? -x : x;
}
inl int spread() {
register char c = getchar();
while (c != 'D'&&c != 'B'&&c != 'S'&&c != 'M'&&c != 'T') {
c = getchar();
}
if (c == 'D')return 0;
else if (c == 'B')return 1;
else if (c == 'S')return 2;
else if (c == 'M')return 3;
else return 4;
}
const int mod = 317847191;
inl int qpow(int x, int y) {
long long ans = 1, base = x;
while (y) {
if (y & 1)ans = ans * base % mod;
base = base * base % mod;
y >>= 1;
}
return ans;
}
inl int exgcd(int a, int b, int &x, int &y) {
if (!b) { x = 1, y = 0; return a; }
re d = exgcd(b, a%b, x, y), z;
z = x, x = y, y = z - (a / b)*y;
return d;
}
priority_queue<int>q, delq;
priority_queue<int, vector<int>, greater<int>>p, delp;
signed main() {
re n = read<int>(), m = read<int>();
long long mulit = 1;
for (re i = 1; i <= n; i++) {
re x = read<int>();
mulit = mulit * x % mod;
q.push(x), p.push(x);
}
while (m--) {
re op = spread();
if (!op) {
re x = read<int>(), b, inv, d;
delq.push(x), delp.push(x);
exgcd(x, mod, inv, d);
mulit = mulit * ((inv+mod)%mod) % mod;
}
else if (op == 1) {
while (!delq.empty() && delq.top() == q.top())delq.pop(), q.pop();
printf("%d\n", q.top());
}
else if (op == 2) {
while (!delp.empty() && delp.top() == p.top())delp.pop(), p.pop();
printf("%d\n", p.top());
}
else if (op == 3) {
while (!delq.empty() && delq.top() == q.top())delq.pop(), q.pop();
while (!delp.empty() && delp.top() == p.top())delp.pop(), p.pop();
printf("%d\n", qpow(q.top(), p.top()));
}
else {
printf("%lld\n", mulit);
}
}
}