题解 P6141 【[JSOI2013]贪心的导游】
分块,设
预处理时枚举每一个块,块内预处理出数组
询问则是经典的分块套路,即整块直接得到答案,零散块暴力。
设块长为
当取块长
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(1e6 + 10), Mod(1e3 + 10), P(1000);
int n, m, a[N], f[Mod][Mod], g[Mod], bel[N], L[N], R[N], Len;
int main()
{
n = read(), m = read(), Len = sqrt(n);
for (int i = 1; i <= n; i++) a[i] = read();
for (int i = 1; i <= n; i++) bel[i] = (i - 1) / Len + 1;
for (int i = 1; i <= n; R[bel[i]] = i, i++) if (!L[bel[i]]) L[bel[i]] = i;
for (int i = 1; i <= bel[n]; i++)
{
memset(g, 0, sizeof g);
for (int j = L[i]; j <= R[i]; j++) g[a[j]] = a[j];
for (int j = 1; j <= P; j++) if (!g[j]) g[j] = g[j - 1];
for (int j = 1; j <= P; j++)
{
f[i][j] = std::max(f[i][j], g[P] % j);
for (int k = j; k <= P; k += j)
f[i][j] = std::max(f[i][j], g[k - 1] % j);
}
}
while (m--)
{
int l = read() + 1, r = read() + 1, p = read(), ans = 0;
if (l > r) std::swap(l, r);
if (bel[l] == bel[r])
for (int i = l; i <= r; i++) ans = std::max(ans, a[i] % p);
else
{
for (int i = bel[l] + 1; i <= bel[r] - 1; i++)
ans = std::max(ans, f[i][p]);
for (int i = l; bel[i] == bel[l]; i++) ans = std::max(ans, a[i] % p);
for (int i = r; bel[i] == bel[r]; i--) ans = std::max(ans, a[i] % p);
}
printf("%d\n", ans);
}
return 0;
}