题解 P1713 【麦当劳叔叔的难题】
EternalAlexander · · 题解
之前的 dfs 剪枝全是假的,10 0 没有一个跑得出来。
计算最短路是容易的,考虑计算最长路。可令
考虑
上图轮廓线的状态对应的
A = [0,0,2,3,3,0,2,1]
考虑
1.对于
2.不存在
也即
(下面的代码需要 C++11)
#include <bits/stdc++.h>
using pii = std::pair<int,int>;
const int inf = 1e7;
int dx[] = {0,1,0,-1};
int dy[] = {1,0,-1,0};
int n,m,dis[12][12],ban[12][12];
std::map< std::vector<int> , int >dp[12][12];
std::vector<int> process(std::vector<int>S) {
int cnt = 1;
int vis[30] = {0};
for (int i = 1; i <= n + 1; ++ i) {
if (S[i] == 0 || S[i] == 1) continue;
if (!vis[S[i]]) { vis[S[i]] = ++cnt; S[i] = cnt; }
else S[i] = vis[S[i]];
} return S;
}
std::vector<int> shift(std::vector<int>S){ for (int i = 1; i <= n; ++ i) S[i] = S[i+1]; S[n+1] = 0; return S; }
std::vector<int> trans(std::vector<int>S,int i) { std::swap(S[i],S[i+1]); return S; }
std::vector<int> create(std::vector<int>S,int i) { S[i] = S[i+1] = 20; return process(S); }
std::vector<int> merge(std::vector<int>S,int i) {
int p = S[i], q = S[i+1], flag = 20;
if (p == 1 || q == 1) flag = 1;
for (int i = 1; i <= n + 1; ++ i) if (S[i] == p || S[i] == q) S[i] = flag;
S[i] = S[i+1] = 0;
return process(S);
}
int main() {
scanf("%d%d",&n,&m);
for (int i = 1; i <= m; ++ i) {
int x,y;
scanf("%d%d",&x,&y);
ban[x][y] = 1;
assert( not ( (x == 1 && y == n) or (x == n && y == 1) ) );
}
auto bfs = [&]() {
std::memset(dis,-1,sizeof(dis));
std::queue< pii >q;
q.push( { 1,n } );
dis[1][n] = 0;
while (q.size()) {
auto u = q.front(); q.pop();
int x = u.first, y = u.second;
for (int i = 0; i < 4; ++ i) {
int x1 = x + dx[i], y1 = y + dy[i];
if (x1 < 1 || x1 > n || y1 < 1 || y1 > n || dis[x1][y1] != -1 || ban[x1][y1]) continue;
dis[x1][y1] = dis[x][y] + 1;
q.push( { x1,y1 } );
}
}
}; bfs();
std::vector<int>v(n+2);
v[n+1] = 1; dp[1][n-1][v] = 1;
v[n+1] = 0; v[n] = 1; dp[1][n-1][v] = 1;
for (int i = 1; i <= n; ++ i) {
for (int j = n - (i == 1); j >= 1; j --) {
for (auto P:dp[i][j]) {
auto S = P.first; int v = P.second;
int p = S[j], q = S[j+1];
if (p == 0 && q == 0) dp[i][j-1][S] = std::max(dp[i][j-1][S],v);
if (ban[i][j]) continue;
if (p == 0 && q == 0) {
auto T = create(S,j);
dp[i][j-1][T] = std::max(dp[i][j-1][T],v + 1);
}
if ((p != 0) + (q != 0) == 1) {
dp[i][j-1][S] = std::max(dp[i][j-1][S],v + 1);
auto T = trans(S,j);
dp[i][j-1][T] = std::max(dp[i][j-1][T],v + 1);
}
if (p && q && p != q) {
auto T = merge(S,j);
dp[i][j-1][T] = std::max(dp[i][j-1][T],v + 1);
}
}
} for (auto P:dp[i][0]) {
auto S = P.first; int v = P.second;
if (S[1] == 0) dp[i+1][n][shift(S)] = dp[i][0][S];
}
}
std::vector<int>S1(n+2),S2(n+2);
S1[1] = 1; S2[2] = 1;
printf("%d",std::max(dp[n][1][S1],dp[n][1][S2]) - dis[n][1]);
return 0;
}