题解 P7342 【『MdOI R4』Destiny】
NaCly_Fish · · 题解
教程:如何正确地使用 OEIS
首先当然是考虑每个数被算进答案多少次,设
随便打个暴力,在 OEIS 上可以找到这个数列,然后眼尖的你一眼就看到了递推式:
上面没给每行的生成函数,只好我们自己算了,,
这个
按二阶递推数列解出来就是
根据数列
而这实际上就是
顺便一提,容易证明
代码奉上:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 262147
#define ll long long
#define reg register
#define p 998244353
using namespace std;
inline int read(){
int x = 0;
char c = getchar();
while(c<'0'||c>'9') c = getchar();
while(c>='0'&&c<='9'){
x = (x<<3)+(x<<1)+(c^48);
c = getchar();
}
return x;
}
inline int add(const int& x,const int& y){ return x+y>=p?x+y-p:x+y; }
inline int dec(const int& x,const int& y){ return x<y?x-y+p:x-y; }
inline int rec(const int& x){ return x>=p?x-p:x; }
inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = (ll)res*a%p;
a = (ll)a*a%p;
t >>= 1;
}
return res;
}
int siz;
int rev[N],rt[N],inv[N],fac[N],ifac[N];
void init(int n){
int lim = 1;
while(lim<=n) lim <<= 1,++siz;
for(reg int i=0;i!=lim;++i) rev[i] = (rev[i>>1]>>1)|((i&1)<<(siz-1));
int w = power(3,(p-1)>>siz);
fac[0] = fac[1] = ifac[0] = ifac[1] = inv[1] = rt[lim>>1] = 1;
for(reg int i=(lim>>1)+1;i!=lim;++i) rt[i] = (ll)rt[i-1]*w%p;
for(reg int i=(lim>>1)-1;i;--i) rt[i] = rt[i<<1];
for(reg int i=2;i<=n;++i) fac[i] = (ll)fac[i-1]*i%p;
ifac[n] = power(fac[n],p-2);
for(reg int i=n-1;i;--i) ifac[i] = (ll)ifac[i+1]*(i+1)%p;
for(reg int i=2;i<=n;++i) inv[i] = (ll)fac[i-1]*ifac[i]%p;
}
inline void dft(int *f,int n){
static unsigned long long a[N];
reg int x,shift = siz-__builtin_ctz(n);
for(reg int i=0;i!=n;++i) a[rev[i]>>shift] = f[i];
for(reg int mid=1;mid!=n;mid<<=1)
for(reg int j=0;j!=n;j+=(mid<<1))
for(reg int k=0;k!=mid;++k){
x = a[j|k|mid]*rt[mid|k]%p;
a[j|k|mid] = a[j|k]+p-x;
a[j|k] += x;
}
for(reg int i=0;i!=n;++i) f[i] = a[i]%p;
}
inline void idft(int *f,int n){
reverse(f+1,f+n);
dft(f,n);
int x = p-((p-1)>>__builtin_ctz(n));
for(reg int i=0;i!=n;++i) f[i] = (ll)f[i]*x%p;
}
inline int getlen(int n){
return 1<<(32-__builtin_clz(n));
}
struct poly{
int a[N],b[N];
int t;
inline poly(int _t=0):t(_t){
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
}
};
inline void getv(int lim,int *v){
int rt = power(3,(p-1)/lim),x = 1;
for(reg int i=0;i!=lim;++i){
v[i] = ((ll)x*x+1)%p;
x = (ll)x*rt%p;
}
}
inline poly multiply(poly f,poly g){
static int A[N],B[N],C[N],D[N],R[N],S[N],v[N];
int n = f.t,lim = getlen(f.t<<1);
getv(lim,v); // 这里是线性计算 (1+x^2) 的 dft,以减少此后的一次 idft
poly h = poly(n);
memcpy(A,f.a,n<<2),memcpy(B,f.b,n<<2);
memcpy(C,g.a,n<<2),memcpy(D,g.b,n<<2);
memset(A+n,0,(lim-n+2)<<2),memset(B+n,0,(lim-n+2)<<2);
memset(C+n,0,(lim-n+2)<<2),memset(D+n,0,(lim-n+2)<<2);
dft(A,lim),dft(B,lim),dft(C,lim),dft(D,lim);
for(reg int i=0;i!=lim;++i){
R[i] = ((ll)A[i]*C[i]+(ll)B[i]*D[i]%p*v[i])%p;
S[i] = ((ll)A[i]*D[i]+(ll)B[i]*C[i])%p;
}
idft(R,lim),idft(S,lim);
for(reg int i=0;i!=n;++i){
h.a[i] = add(R[i],R[i+n]);
h.b[i] = add(S[i],S[i+n]);
}
h.a[0] = add(h.a[0],R[n<<1]);
h.a[1] = add(h.a[1],R[n<<1|1]);
return h;
}
inline poly square(poly f){ // 算平方的时候可以减少 dft 次数
static int A[N],B[N],R[N],S[N],v[N];
int n = f.t,lim = getlen(f.t<<1);
getv(lim,v);
poly h = poly(n);
memcpy(A,f.a,n<<2),memcpy(B,f.b,n<<2);
memset(A+n,0,(lim-n+2)<<2),memset(B+n,0,(lim-n+2)<<2);
dft(A,lim),dft(B,lim);
for(reg int i=0;i!=lim;++i){
R[i] = ((ll)A[i]*A[i]+(ll)B[i]*B[i]%p*v[i])%p;
S[i] = ((ll)A[i]*B[i]<<1)%p;
}
idft(R,lim),idft(S,lim);
for(reg int i=0;i!=n;++i){
h.a[i] = add(R[i],R[i+n]);
h.b[i] = add(S[i],S[i+n]);
}
h.a[0] = add(h.a[0],R[n<<1]);
h.a[1] = add(h.a[1],R[n<<1|1]);
return h;
}
inline poly power(poly f,int n,int t){
poly g = poly(n);
g.a[0] = 1;
while(t){
if(t&1) g = multiply(f,g);
t >>= 1;
if(t==0) break;
f = square(f);
}
return g;
}
int n,k,ans;
poly f;
int a[N];
int main(){
n = read(),k = read();
init(k<<1);
f.t = k;
f.a[0] = f.a[1] = f.b[0] = 1;
f = power(f,k,n);
for(reg int i=0;i!=k;++i) ans = (ans+(ll)f.b[i]*read())%p;
printf("%lld",(ll)ans*power(2,p-2)%p);
return 0;
}