【题解】多项式反三角函数
NaCly_Fish · · 题解
之前的代码数组开的不够大,导致某些抄代码的同学RE了,在此表示非常抱歉!现已修复。
要做这道题,得先知道 多项式开根 怎么做。
给定一个多项式
考虑将两遍求导,得到
然后再积分回来
这里用到的思想,和求多项式
求
然后直接计算即可。
Code:
#pragma GCC optimize ("unroll-loops")
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 262147
#define ll long long
#define reg register
#define p 998244353
using namespace std;
inline int add(const int& x,const int& y){ return x+y>=p?x+y-p:x+y; }
inline int dec(const int& x,const int& y){ return x<y?x-y+p:x-y; }
inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = (ll)res*a%p;
a = (ll)a*a%p;
t >>= 1;
}
return res;
}
inline int getlen(int n){
return 1<<(32-__builtin_clz(n));
}
int rt[N],rev[N],inv[N];
int siz;
void init(int n){
int w,lim = 1;
while(lim<=n) lim <<= 1,++siz;
for(reg int i=1;i!=lim;++i) rev[i] = (rev[i>>1]>>1)|((i&1)<<(siz-1));
w = power(3,(p-1)>>siz);
inv[1] = rt[lim>>1] = 1;
for(reg int i=lim>>1|1;i!=lim;++i) rt[i] = (ll)rt[i-1]*w%p;
for(reg int i=(lim>>1)-1;i;--i) rt[i] = rt[i<<1];
for(reg int i=2;i<=n;++i) inv[i] = (ll)(p-p/i)*inv[p%i]%p;
}
inline void NTT(int *f,int type,int lim){
if(type==-1) reverse(f+1,f+lim);
static unsigned long long a[N];
reg int x,shift = siz-__builtin_ctz(lim);
for(reg int i=0;i!=lim;++i) a[rev[i]>>shift] = f[i];
for(reg int mid=1;mid!=lim;mid<<=1)
for(reg int j=0;j!=lim;j+=(mid<<1))
for(reg int k=0;k!=mid;++k){
x = a[j|k|mid]*rt[mid|k]%p;
a[j|k|mid] = a[j|k]+p-x;
a[j|k] += x;
}
for(reg int i=0;i!=lim;++i) f[i] = a[i]%p;
if(type==1) return;
x = p-((p-1)>>(siz-shift));
for(reg int i=0;i!=lim;++i) f[i] = (ll)f[i]*x%p;
}
inline void inverse(const int *f,int n,int *R){
static int g[N],h[N],s[30];
memset(g,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
while(n){
s[++top] = n;
n >>= 1;
}
g[0] = power(f[0],p-2);
while(top--){
n = s[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,f,(n+1)<<2);
memset(h+n+1,0,(lim-n)<<2);
NTT(g,1,lim),NTT(h,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = g[i]*(2-(ll)g[i]*h[i]%p+p)%p;
NTT(g,-1,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(R,g,(n+1)<<2);
}
inline void sqrt(const int *f,int n,int *R){
static int g[N],h[N];
memset(g,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
int s[30];
while(n){
s[++top] = n;
n >>= 1;
}
g[0] = 1;
while(top--){
n = s[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,g,(n+1)<<2);
for(int i=0;i<=n;++i) h[i] = add(h[i],h[i]);
inverse(h,n,h);
NTT(g,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*g[i]%p;
NTT(g,-1,lim);
for(reg int i=0;i<=n;++i) g[i] = add(g[i],f[i]);
memset(g+n+1,0,(lim-n)<<2);
NTT(g,1,lim),NTT(h,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
NTT(g,-1,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(R,g,(n+1)<<2);
}
inline void asin(const int *f,int n,int *R){
static int g[N],h[N];
int lim = getlen(n<<1);
memcpy(g,f,(n+1)<<2);
memset(g+n+1,0,(lim-n)<<2);
NTT(g,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*g[i]%p;
NTT(g,-1,lim);
memset(g+n+1,0,(lim-n)<<2);
for(reg int i=0;i<=n;++i) g[i] = g[i]?p-g[i]:0;
++g[0];
sqrt(g,n,g);
inverse(g,n,g);
for(reg int i=0;i!=n;++i) h[i] = (ll)(i+1)*f[i+1]%p;
memset(h+n,0,(lim-n+1)<<2);
NTT(g,1,lim),NTT(h,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
NTT(g,-1,lim);
for(reg int i=1;i<=n;++i) R[i] = (ll)g[i-1]*inv[i]%p;
R[0] = 0;
}
inline void atan(const int *f,int n,int *R){
static int g[N],h[N];
int lim = getlen(n<<1);
memcpy(g,f,(n+1)<<2);
memset(g+n+1,0,(lim-n)<<2);
NTT(g,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*g[i]%p;
NTT(g,-1,lim);
memset(g+n+1,0,(lim-n)<<2);
++g[0];
inverse(g,n,g);
for(reg int i=0;i!=n;++i) h[i] = (ll)(i+1)*f[i+1]%p;
memset(h+n,0,(lim-n+1)<<2);
NTT(g,1,lim),NTT(h,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
NTT(g,-1,lim);
for(reg int i=1;i<=n;++i) R[i] = (ll)g[i-1]*inv[i]%p;
R[0] = 0;
}
int n,tp;
int F[N];
int main(){
scanf("%d%d",&n,&tp);
init(n<<2);
for(reg int i=0;i!=n;++i) scanf("%d",&F[i]);
if(tp==0) asin(F,n-1,F);
else atan(F,n-1,F);
for(reg int i=0;i!=n;++i) printf("%d ",F[i]);
return 0;
}