题解 P2857 【[USACO06FEB]稳定奶牛分配Steady Cow Assignment】
Heartlessly · · 题解
Description
给定
Solution
考虑 网络流 + 二分答案 。
我们可以把图分成两部分。左部点是牛,右部点是牛棚。
在源点与每头牛之间连一条流量为
对于样例所建出的图:
牛和牛棚之间的边呢?显然不能直接全部连上。
我们可以 二分答案(假设答案为
即每头牛不满意度所在的区间为
不过由于数据范围比较小,暴力枚举也能过。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
template <class T>
inline void read(T &x) {
x = 0;
char c = getchar();
bool f = 0;
for (; !isdigit(c); c = getchar()) f ^= c == '-';
for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
x = f ? -x : x;
}
template <class T>
inline void write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
T y = 1;
int len = 1;
for (; y <= x / 10; y *= 10) ++len;
for (; len; --len, x %= y, y /= 10) putchar(x / y + 48);
}
const int MAXN = 2e3, MAXB = 20, MAXM = 1e5, INF = 0x3f3f3f3f;
int n, b, ans, tot, head[MAXN + 5], cur[MAXN + 5], depth[MAXN + 5];
int v[MAXB + 5], f[MAXN + 5][MAXB + 5];
struct Edge {
int next, to, dis;
} e[MAXM + 5];
inline void addEdge(int u, int v, int w) {
e[++tot] = (Edge) { head[u], v, w };
head[u] = tot;
}
inline bool bfs(int s, int t) {
for (int i = 0; i <= t; ++i) cur[i] = head[i];
memset(depth, 0, sizeof (depth));
queue<int> q;
depth[s] = 1;
q.push(s);
for (; !q.empty(); ) {
int u = q.front();
q.pop();
for (int v, w, i = head[u]; v = e[i].to, w = e[i].dis, i; i = e[i].next) {
if (depth[v] || !w) continue;
depth[v] = depth[u] + 1;
if (v == t) return 1;
q.push(v);
}
}
return 0;
}
int dinic(int u, int t, int flow) {
if (u == t) return flow;
int rest = flow;
for (int v, w, i = cur[u]; v = e[i].to, w = e[i].dis, i && rest; i = e[i].next) {
cur[u] = i;//当前弧优化
if (depth[v] != depth[u] + 1 || !w) continue;
int k = dinic(v, t, min(rest, w));
if (!k) depth[v] = 0;
else {
e[i].dis -= k;
e[i ^ 1].dis += k;
rest -= k;
}
}
return flow - rest;
}
inline int maxFlow(int s, int t) {
int res = 0;
for (; bfs(s, t); ) res += dinic(s, t, INF);
return res;
}
inline bool check(int x) {//检查答案 x
for (int i = 1; i + x - 1 <= b; ++i) {
//最小满意度为 i,最大满意度为 i + x - 1
tot = 1;
memset(head, 0, sizeof (head));
int s = 0, t = n + b + 1;//源点编号和汇点编号
for (int j = 1; j <= n; ++j)//源点与牛连一条流量为 1 的边
addEdge(s, j, 1), addEdge(j, s, 0);
for (int j = 1; j <= b; ++j)//牛棚与汇点连一条流量为 v[j] 的边
addEdge(j + n, t, v[j]), addEdge(t, j + n, 0);
//与第 i ~ i + x - 1 喜欢的牛棚连一条流量为 1 的边
for (int j = 1; j <= n; ++j)
for (int k = i; k <= i + x - 1; ++k)
addEdge(j, f[j][k] + n, 1), addEdge(f[j][k] + n, j, 0);
if (maxFlow(s, t) == n) return 1;//若最大流为 n,则该答案可行
}
return 0;
}
int main() {
read(n), read(b);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= b; ++j)
read(f[i][j]);//第 i 头牛第 j 喜欢的牛棚是 f[i][j]
for (int i = 1; i <= b; ++i) read(v[i]);
for (int mid, l = 1, r = b; l <= r; ) {//二分答案
mid = (l + r) >> 1;
if (check(mid)) {
r = mid - 1;
ans = mid;
} else l = mid + 1;
}
write(ans);
putchar('\n');
return 0;
}