题解 P2293 【[HNOI2004]高精度开根】
给出一个复杂度为
首先根据冬令营 2012 年的《理性愉悦:高精度数值计算》,我们已经拥有了基于倍增的牛顿迭代法,对两个位数
我们接着根据牛顿迭代法解方程
那么就有迭代方程
我们要取整的话即改写成
可以证明当
这个迭代式是 2 阶收敛的,这意味着我们如果初值选的好,那么只需要迭代
初值可以这样选:首先估算答案的位数为
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <complex>
#include <string>
#include <vector>
#define LOG(FMT...) fprintf(stderr, FMT)
using namespace std;
typedef long long ll;
typedef complex<double> cd;
const int BASE = 5, MOD = 100000, LGM = 17;
const double PI = 3.1415926535897932384626;
class UnsignedDigit;
namespace DivHelper { UnsignedDigit quasiInv(const UnsignedDigit& v); }
class UnsignedDigit {
public:
vector<int> digits;
public:
UnsignedDigit() : digits(1) {}
UnsignedDigit(const vector<int>& digits);
UnsignedDigit(ll x);
UnsignedDigit(string str);
string toString() const;
int size() const { return digits.size(); }
bool operator<(const UnsignedDigit& rhs) const;
bool operator<=(const UnsignedDigit& rhs) const;
bool operator==(const UnsignedDigit& rhs) const;
UnsignedDigit operator+(const UnsignedDigit& rhs) const;
UnsignedDigit operator-(const UnsignedDigit& rhs) const;
UnsignedDigit operator*(const UnsignedDigit& rhs) const;
UnsignedDigit operator/(const UnsignedDigit& rhs) const;
UnsignedDigit operator/(int v) const;
UnsignedDigit move(int k) const;
friend UnsignedDigit DivHelper::quasiInv(const UnsignedDigit& v);
friend void swap(UnsignedDigit& lhs, UnsignedDigit& rhs) { swap(lhs.digits, rhs.digits); }
public:
void trim();
};
class UnsignedDecimal {};
class Int {};
class Decimal {};
namespace ConvHelper {
void fft(cd* a, int lgn, int d) {
int n = 1 << lgn;
{
static vector<int> brev;
if (n != brev.size()) {
brev.resize(n);
for (int i = 0; i < n; ++i)
brev[i] = (brev[i >> 1] >> 1) | ((i & 1) << (lgn - 1));
}
for (int i = 0; i < n; ++i)
if (brev[i] < i)
swap(a[brev[i]], a[i]);
}
for (int t = 1; t < n; t <<= 1) {
cd omega(cos(PI / t), sin(PI * d / t));
for (int i = 0; i < n; i += t << 1) {
cd* p = a + i;
cd w(1);
for (int j = 0; j < t; ++j) {
cd x = p[j + t] * w;
p[j + t] = p[j] - x;
p[j] += x;
w *= omega;
}
}
}
if (d == -1) {
for (int i = 0; i < n; ++i)
a[i] /= n;
}
}
vector<ll> conv(const vector<int>& a, const vector<int>& b) {
int n = a.size() - 1, m = b.size() - 1;
if (n < 1000 / (m + 1) || n < 10 || m < 10) {
vector<ll> ret(n + m + 1);
for (int i = 0; i <= n; ++i)
for (int j = 0; j <= m; ++j)
ret[i + j] += a[i] * (ll)b[j];
return ret;
}
int lgn = 0;
while ((1 << lgn) <= n + m)
++lgn;
vector<cd> ta(a.begin(), a.end()), tb(b.begin(), b.end());
ta.resize(1 << lgn);
tb.resize(1 << lgn);
fft(ta.begin().base(), lgn, 1);
fft(tb.begin().base(), lgn, 1);
for (int i = 0; i < (1 << lgn); ++i)
ta[i] *= tb[i];
fft(ta.begin().base(), lgn, -1);
vector<ll> ret(n + m + 1);
for (int i = 0; i <= n + m; ++i)
ret[i] = ta[i].real() + 0.5;
return ret;
}
}
namespace DivHelper {
UnsignedDigit quasiInv(const UnsignedDigit& v) {
if (v.digits.size() == 1) {
UnsignedDigit tmp;
tmp.digits.resize(3);
tmp.digits[2] = 1;
return tmp / v.digits[0];
}
if (v.digits.size() == 2) {
UnsignedDigit sum = 0, go = 1;
vector<int> tmp(4);
go = go.move(4);
vector<UnsignedDigit> db(LGM);
db[0] = v;
for (int i = 1; i < LGM; ++i)
db[i] = db[i - 1] + db[i - 1];
for (int i = 3; i >= 0; --i) {
for (int k = LGM - 1; k >= 0; --k)
if (sum + db[k].move(i) <= go) {
sum = sum + db[k].move(i);
tmp[i] |= 1 << k;
}
}
return tmp;
}
int n = v.digits.size(), k = (n + 2) / 2;
UnsignedDigit tmp = quasiInv(vector<int>(v.digits.end().base() - k, v.digits.end().base()));
return (UnsignedDigit(2) * tmp).move(n - k) - (v * tmp * tmp).move(-2 * k);
}
}
UnsignedDigit::UnsignedDigit(ll x) {
while (x) {
digits.push_back(x % MOD);
x /= MOD;
}
if (digits.empty())
digits.push_back(0);
}
UnsignedDigit UnsignedDigit::move(int k) const {
if (k == 0)
return *this;
if (k < 0) {
if (-k >= digits.size())
return UnsignedDigit();
return vector<int>(digits.begin().base() + (-k), digits.end().base());
}
if (digits.size() == 1 && digits[0] == 0)
return UnsignedDigit();
UnsignedDigit ret;
ret.digits.resize(k, 0);
ret.digits.insert(ret.digits.end(), digits.begin(), digits.end());
return ret;
}
bool UnsignedDigit::operator<(const UnsignedDigit& rhs) const {
int n = digits.size(), m = rhs.digits.size();
if (n != m)
return n < m;
for (int i = n - 1; i >= 0; --i)
if (digits[i] != rhs.digits[i])
return digits[i] < rhs.digits[i];
return false;
}
bool UnsignedDigit::operator<=(const UnsignedDigit& rhs) const {
int n = digits.size(), m = rhs.digits.size();
if (n != m)
return n < m;
for (int i = n - 1; i >= 0; --i)
if (digits[i] != rhs.digits[i])
return digits[i] < rhs.digits[i];
return true;
}
bool UnsignedDigit::operator==(const UnsignedDigit& rhs) const {
int n = digits.size(), m = rhs.digits.size();
if (n != m)
return false;
return memcmp(digits.begin().base(), rhs.digits.begin().base(), n) == 0;
}
UnsignedDigit UnsignedDigit::operator+(const UnsignedDigit& rhs) const {
int n = digits.size(), m = rhs.digits.size();
vector<int> tmp = digits;
if (m > n) {
tmp.resize(m + 1);
for (int i = 0; i < m; ++i)
if ((tmp[i] += rhs.digits[i]) >= MOD) {
tmp[i] -= MOD;
++tmp[i + 1];
}
} else {
tmp.resize(n + 1);
for (int i = 0; i < m; ++i)
if ((tmp[i] += rhs.digits[i]) >= MOD) {
tmp[i] -= MOD;
++tmp[i + 1];
}
for (int i = m; i < n; ++i)
if (tmp[i] == MOD) {
tmp[i] = 0;
++tmp[i + 1];
}
}
return tmp;
}
UnsignedDigit UnsignedDigit::operator*(const UnsignedDigit& rhs) const {
vector<ll> tmp = ConvHelper::conv(digits, rhs.digits);
for (int i = 0; i + 1 < tmp.size(); ++i) {
tmp[i + 1] += tmp[i] / MOD;
tmp[i] %= MOD;
}
while (tmp.back() >= MOD) {
ll remain = tmp.back() / MOD;
tmp.back() %= MOD;
tmp.push_back(remain);
}
return vector<int>(tmp.begin(), tmp.end());
}
UnsignedDigit UnsignedDigit::operator/(const UnsignedDigit& rhs) const {
int m = digits.size(), n = rhs.digits.size(), t = 0;
if (m < n)
return 0;
if (m > n * 2)
t = m - 2 * n;
UnsignedDigit sv = DivHelper::quasiInv(rhs.move(t));
UnsignedDigit ret = move(t) * sv;
ret = ret.move(-2 * (n + t));
if ((ret + 1) * rhs <= *this)
ret = ret + 1;
return ret;
}
UnsignedDigit UnsignedDigit::operator/(int k) const {
UnsignedDigit ret;
int n = digits.size();
ret.digits.resize(n);
ll r = 0;
for (int i = n - 1; i >= 0; --i) {
r = r * MOD + digits[i];
ret.digits[i] = r / k;
r %= k;
}
ret.trim();
return ret;
}
UnsignedDigit UnsignedDigit::operator-(const UnsignedDigit& rhs) const {
UnsignedDigit ret(*this);
int n = rhs.digits.size();
for (int i = 0; i < n; ++i)
if ((ret.digits[i] -= rhs.digits[i]) < 0) {
ret.digits[i] += MOD;
--ret.digits[i + 1];
}
ret.trim();
return ret;
}
UnsignedDigit::UnsignedDigit(const vector<int>& digits) : digits(digits) {
if (this->digits.empty())
this->digits.resize(1);
trim();
}
void UnsignedDigit::trim() {
while (digits.size() > 1 && digits.back() == 0)
digits.pop_back();
}
string UnsignedDigit::toString() const {
static char buf[BASE + 1];
sprintf(buf, "%d", digits.back());
string ret = buf;
int q = ret.size();
ret.resize(q + BASE * (digits.size() - 1));
int j = 0;
for (int i = (int)digits.size() - 2; i >= 0; --i) {
sprintf(const_cast<char*>(ret.c_str()) + q + j * BASE, "%05d", digits[i]);
++j;
}
return ret;
}
UnsignedDigit::UnsignedDigit(string str) {
reverse(str.begin(), str.end());
digits.resize((str.size() + BASE - 1) / BASE);
int cur = 1;
for (int i = 0; i < str.size(); ++i) {
if (i % BASE == 0)
cur = 1;
digits[i / BASE] += cur * (str[i] - '0');
cur *= 10;
}
trim();
}
UnsignedDigit pow(UnsignedDigit x, int k) {
UnsignedDigit ret = 1;
while (k) {
if (k & 1)
ret = ret * x;
if (k >>= 1)
x = x * x;
}
return ret;
}
int main() {
int m;
cin >> m;
string s;
cin >> s;
if (s == "0") {
cout << "0" << endl;
return 0;
}
if (m == 1) {
cout << s << endl;
return 0;
}
UnsignedDigit n(s);
UnsignedDigit x(min(n, UnsignedDigit(MOD - 1).move((n.size() + m - 1) / m - 1))), xx;
{
int top = x.size() - 1;
int l = 0, r = MOD - 1;
while (l < r) {
int mid = (l + r) / 2;
x.digits[top] = mid;
if (pow(x, m) <= n)
l = mid + 1;
else
r = mid;
}
x.digits[top] = l;
x.trim();
}
//cerr << x.toString() << endl;
xx = (x * (m - 1) + n / pow(x, m - 1)) / m;
while (xx < x) {
// cout << xx.toString() << endl;
swap(x, xx);
xx = (x * (m - 1) + n / pow(x, m - 1)) / m;
}
cout << x.toString() << endl;
return 0;
}