十二重 GF 法
Aleph1022
·
·
题解
写一篇纯 GF 题解!
I
一个盒子是 \mathrm e^z,则
\left[\frac{z^n}{n!}\right] \mathrm e^{mz} = m^n
II
一个盒子是 1+z,则
\left[\frac{z^n}{n!}\right] (1+z)^m = n! \binom mn = m^{\underline n}
III
一个盒子是 \mathrm e^z - 1,则
\begin{aligned}
\left[\frac{z^n}{n!}\right] (\mathrm e^z-1)^m
&= \left[\frac{z^n}{n!}\right] \sum\limits_{k=0}^m \binom mk \mathrm e^{kz} (-1)^{m-k} \\
&= \sum\limits_{k=0}^m \binom mk k^n (-1)^{m-k}
\end{aligned}
IV
所有空盒不可区分,而所有非空盒事实上被盒中的球的标号区分,则
\begin{aligned}
\left[\frac{z^n}{n!}\right] \sum\limits_{k=0}^m \frac1{k!}(\mathrm e^z-1)^k
&= \left[\frac{z^n}{n!}\right] \sum\limits_{k=0}^m \frac1{k!} \sum\limits_{i=0}^k \binom ki \mathrm e^{iz} (-1)^{k-i} \\
&= \left[\frac{z^n}{n!}\right] \sum\limits_{i=0}^m \frac{\mathrm e^{iz}}{i!} \sum\limits_{k=i}^m \frac{(-1)^{k-i}}{(k-i)!} \\
&= \sum\limits_{i=0}^m \frac{i^n}{i!} \sum\limits_{k=0}^{m-i} \frac{(-1)^k}{k!}
\end{aligned}
V
\left[\frac{z^n}{n!}\right] \sum\limits_{k=0}^m \frac1{k!}z^k
= [n\le m]
VI
\begin{aligned}
\left[\frac{z^n}{n!}\right] \frac1{m!}(\mathrm e^z-1)^m
&= \left[\frac{z^n}{n!}\right] \frac1{m!}\sum\limits_{k=0}^m \binom mk \mathrm e^{kz} (-1)^{m-k} \\
&= \frac1{m!}\sum\limits_{k=0}^m \binom mk k^n (-1)^{m-k}
\end{aligned}
VII
一个盒子是 \frac1{1-z},则
[z^n] \frac1{(1-z)^m} = \binom{n+m-1}n
VIII
一个盒子是 1+z,则
[z^n] (1+z)^m = \binom mn
IX
一个盒子是 \frac z{1-z},则
[z^n] \frac{z^m}{(1-z)^m} = \binom{n-1}{m-1}
X
令二元 GF
F(z,q) = \prod\limits_{k\ge 0} \frac1{1-qz^k}
那么
F(z,q) = \frac1{1-q} F(z,qz)
令 F_m(z) = [q^m] F(z,q),则
F_m(z) = \frac1{1-z^m} F_{m-1}(z)
由于 F_0(z)=1,则
F_m(z) = \prod\limits_{k=1}^m \frac1{1-z^k}
故答案为
[z^n] F_m(z)
而
\begin{aligned}
F_m(z) &= \prod\limits_{k=1}^m \frac1{1-z^k} \\
&= \exp\left[\sum\limits_{k=1}^m \ln \frac1{1-z^k}\right] \\
&= \exp\left[\sum\limits_{k=1}^m \sum\limits_{i\ge 1} \frac{z^{ki}}i\right]
\end{aligned}
XI
令二元 GF
F(z,q) = \frac1{1-q}\frac1{1-qz}
则
[z^n q^m] F(z,q) = [n\le m]
XII
令二元 GF
F(z,q) = \prod\limits_{k\ge 1} \frac1{1-qz^k}
那么
F(z,q) = \frac1{1-qz} F(z,qz)
令 F_m(z) = [q^m] F(z,q),则
F_m(z) = \frac z{1-z^m} F_{m-1}(z)
由于 F_0(z)=1,则
F_m(z) = \prod\limits_{k=1}^m \frac z{1-z^k}
故答案为
[z^n] F_m(z)
而
\begin{aligned}
F_m(z) &= \prod\limits_{k=1}^m \frac z{1-z^k} \\
&= z^m \exp\left[\sum\limits_{k=1}^m \ln \frac1{1-z^k}\right] \\
&= z^m \exp\left[\sum\limits_{k=1}^m \sum\limits_{i\ge 1} \frac{z^{ki}}i\right]
\end{aligned}