勒让德倍量公式的证明

· · 算法·理论

勒让德倍量公式

\sqrt\pi\operatorname{\Gamma}(2n)=2^{2n-1}\operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})

证明

\operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})=\displaystyle\int_0^{+\infty}x^{n-1}e^{-x}\mathop{}\!\mathrm{d} x\int_0^{+\infty}y^{n-\frac{1}{2}}e^{-y}\mathop{}\!\mathrm{d} y\\=\int_0^{+\infty}\int_0^{+\infty}(xy)^{n-\frac{1}{2}}e^{-(x+y)}x^{-\frac{1}{2}}\mathop{}\!\mathrm{d} x\mathop{}\!\mathrm{d} y\\=\int_0^{+\infty}\int_0^{+\infty}(xy)^{n-\frac{1}{2}}e^{-(x+y)}y^{-\frac{1}{2}}\mathop{}\!\mathrm{d} x\mathop{}\!\mathrm{d} y\\=\frac{1}{2}\int_0^{+\infty}\int_0^{+\infty}(xy)^{n-\frac{1}{2}}e^{-(x+y)}(x^{-\frac{1}{2}}+y^{-\frac{1}{2}})\mathop{}\!\mathrm{d} x\mathop{}\!\mathrm{d} y

换元 \begin{cases}x=u^2\\y=v^2\end{cases}

应用雅可比行列式 ||J||=|\frac{\partial(x,y)}{\partial(u,v)}|=|\begin{vmatrix} 2u&0\\0&2v\\ \end{vmatrix}|=4uv

带入 \operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})

\operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})=2\displaystyle\int_0^{+\infty}\int_0^{+\infty}(uv)^{2n-1}e^{-(u^2+v^2)}(u+v)\mathop{}\!\mathrm{d} u\mathop{}\!\mathrm{d} v\\=4\displaystyle\int_0^{+\infty}\int_v^{+\infty}(uv)^{2n-1}e^{-(u^2+v^2)}(u+v)\mathop{}\!\mathrm{d} u\mathop{}\!\mathrm{d} v

换元 \begin{cases}u^2+v^2=p\\2uv=q\end{cases}

再次应用雅可比行列式 |\frac{1}{|J|}|=|\frac{\partial(p,q)}{\partial(u,v)}|=|\begin{vmatrix} 2u&2v\\2v&2u\\ \end{vmatrix}|=4(u^2-v^2)=4(p^2-q^2)^{\frac{1}{2}}

带入 \operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})

\operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})=4\displaystyle\int_0^{+\infty}\int_q^{+\infty}(\frac{q}{2})^{(2n-1)}e^{-p}\sqrt{p+q}\frac{1}{4\sqrt{p^2-q^2}}\mathop{}\!\mathrm{d} p\mathop{}\!\mathrm{d} q\\=\int_0^{+\infty}\int_q^{+\infty}\frac{q^{2n-1}}{2^{2n-1}}e^p\frac{1}{\sqrt{p-q}}\mathop{}\!\mathrm{d} p\mathop{}\!\mathrm{d} q\\=\int_0^{+\infty}\frac{q^{2n-1}}{2^{2n-1}}e^{-q}\mathop{}\!\mathrm{d} q\int_q^{+\infty}e^{-(p-q)}(p-q)^{-\frac{1}{2}}\mathop{}\!\mathrm{d} p\\=\int_0^{+\infty}\frac{q^{2n-1}}{2^{2n-1}}e^{-q}\mathop{}\!\mathrm{d} q \operatorname{\Gamma}(\frac{1}{2})\\=\sqrt{\pi}\frac{1}{2^{2n-1}}\int_0^{+\infty}q^{2n-1}e^{-q}\mathop{}\!\mathrm{d} p\\=\sqrt\pi\frac{1}{2^{2n-1}}\operatorname{\Gamma}(2n)

整理得 \sqrt\pi\operatorname{\Gamma}(2n)=2^{2n-1}\operatorname{\Gamma}(n)\operatorname{\Gamma}(n+\frac{1}{2})

证毕。

(打了一晚上了,点个赞吧)