CF852D Exploration plan 题解

· · 题解

首先发现答案可以二分,考虑如何判定。

首先用最短路算法跑全源最短路预处理 d_{i,j} 表示 ij 最短路。用 Floyd 做复杂度是 O(n^3) 的,若使用 Dijkstra 算法则是 O(nm \log m) 的,不过几种做法均可,因为复杂度瓶颈不在这里。

对于当前需要判定时间 x 是否可以,我们发现任意一点对 (i,j) 只需满足 d_{i,j} \leq x 即可进行移动。

考虑网络流模型:

S \rightarrow T 的最大流 \geq k,则时间 x 可行,否则不可。

#include <bits/stdc++.h>
using namespace std;

const int M = 605, N = 1e6 + 5;

int n, m, p, k;
vector<pair<int, int> > G[N];

int dis[M][M], S = 0, T;
bool vis[N];

int e[N], h[N], c[N], ne[N], idx;
int g[N], pdd[N];
int d[N], cur[N];

inline void add(int u, int v, int w)
{
    e[idx] = v, ne[idx] = h[u], c[idx] = w, h[u] = idx++;
    e[idx] = u, ne[idx] = h[v], c[idx] = 0, h[v] = idx++;
}

struct Node
{
    int u, d;
    Node(int _u, int _d): u(_u), d(_d){}
    bool operator<(const Node& g) const
    {
        return d > g.d;
    }
};

inline void dijkstra(int s)
{
    for (int i = 1; i <= n; i++) vis[i] = 0;
    dis[s][s] = 0;
    priority_queue<Node> q;
    q.push(Node(s, 0));
    while (q.size())
    {
        int u = q.top().u;
        q.pop();
        if (vis[u]) continue;
        vis[u] = 1;
        for (auto j : G[u])
        {
            if (dis[s][j.first] > dis[s][u] + j.second)
            {
                dis[s][j.first] = dis[s][u] + j.second;
                q.push(Node(j.first, dis[s][j.first]));
            }
        }
    } 
}

inline bool bfs()
{
    for (int i = 0; i <= T; i++) d[i] = cur[i] = -1;
    queue<int> q;
    q.push(S);
    d[S] = 0, cur[S] = h[S];
    while (q.size())
    {
        int u = q.front();
        q.pop();
        for (int i = h[u]; ~i; i = ne[i])
        {
            int j = e[i];
            if (c[i] > 0 && d[j] == -1)
            {
                d[j] = d[u] + 1;
                cur[j] = h[j];
                if (j == T) return 1;
                q.push(j);
            }
        }
    }
    return 0;
}

inline int dfs(int u, int lim)
{
    if (u == T) return lim;
    int sum = 0;
    for (int i = cur[u]; ~i && sum < lim; i = ne[i])
    {
        cur[u] = i;
        int j = e[i];
        if (c[i] > 0 && d[j] == d[u] + 1)
        {
            int w = dfs(j, min(c[i], lim - sum));
            if (!w) d[j] = -1;
            sum += w;
            c[i] -= w;
            c[i ^ 1] += w;
        }
    }
    return sum;
}

inline int dinic()
{
    int res = 0;
    while (bfs())
    {
        int p;
        while (p = dfs(S, INT_MAX)) res += p;
    }
    return res;
}

inline bool check(int x)
{
    for (int i = 0; i <= T + 5; i++) h[i] = -1;
    idx = 0;
    for (int i = 1; i <= n; i++)
    {
        if (!pdd[i]) continue;
        for (int j = 1; j <= n; j++)
        {
            if (dis[i][j] <= x)
            {
                add(i, j + n, INT_MAX);
            }
        }
        add(S, i, pdd[i]);
    }
    for (int i = 1; i <= n; i++)
    {
        add(i + n, T, 1);
    }
    return (dinic() >= k);
}

int main()
{
    memset(h, -1, sizeof h);
    memset(dis, 0x3f, sizeof dis);
    scanf("%d%d%d%d", &n, &m, &p, &k);
    T = n + n + 1;
    for (int i = 1; i <= p; i++) scanf("%d", &g[i]), pdd[g[i]]++;
    for (int i = 1; i <= m; i++)
    {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        G[u].emplace_back(make_pair(v, w));
        G[v].emplace_back(make_pair(u, w));
    }
    for (int i = 1; i <= n; i++)
    {
        dijkstra(i);
    }
    int l = 0, r = 1731312, ans = -1;
    while (l <= r)
    {
        int mid = l + r >> 1;
        if (check(mid)) ans = mid, r = mid - 1;
        else l = mid + 1;
    }
    printf("%d\n", ans);
    return 0;
}