P5388 最终幻想 母函数

· · 题解

yamengxi 大佬写了一个优美的公式,但是没有给出证明。时隔两年,本蒟蒻终于可以帮大佬补个证明了。

假设答案是 f_n(k) ,那么根据 cza 的题解,可以得到以下递推表达式:

\sum_{i=0}^{k-1}f_{n-1}(i) + 1 & n > 1 \\ k + 1 & n = 1 \end{cases}

下面用母函数来求 f_n(k) 的通项。设

G_n(x) = \sum_{k=0}^{\infty}f_n(k) x^k

那么有

G_1(x) =& \sum_{k=0}^{\infty}f_1(k) x^k \\ =& \sum_{k=0}^{\infty}(k+1)x^k \\ =& (\sum_{k=0}^{\infty}x^{k+1})' \\ =& (\sum_{k=1}^{\infty}x^k)' \\ =& (\sum_{k=0}^{\infty}x^k - 1)' \\ =& (\frac{1}{1-x} - 1)' \\ =& \frac{1}{(1-x)^2} \end{aligned} $$\begin{aligned} G_n(x) =& \sum_{k=0}^{\infty}f_n(k) x^k \\ =& \sum_{k=0}^{\infty}(\sum_{i=0}^{k-1}f_{n-1}(i) + 1)x^k \\ =& \sum_{k=0}^{\infty}x^k + \sum_{k=0}^{\infty}(\sum_{i=0}^{k-1}f_{n-1}(i))x^k \\ =& \frac{1}{1-x} + x\sum_{k=0}^{\infty}(\sum_{i=0}^k f_{n-1}(i))x^k \\ =& \frac{1}{1-x} + x(\sum_{k=0}^{\infty}f_{n-1}(k)x^k)(\sum_{k=0}^{\infty}x^k) \\ =& \frac{1}{1-x} + \frac{x}{1-x}G_{n-1}(x) \end{aligned}$$ 所以 $$G_2(x) = \frac{x}{(1-x)^3} + \frac{1}{1-x}$$ $$G_3(x) = \frac{x^2}{(1-x)^4} + \frac{x}{(1-x)^2} + \frac{1}{1-x}$$ $$\begin{aligned} G_n(x) =& \frac{x^{n-1}}{(1-x)^{n+1}} + \sum_{i=0}^{n-2}\frac{x^i}{(1-x)^{i+1}} \\ =& \frac{x^{n-1}}{(1-x)^{n+1}} + \frac{1}{1-x} \frac{1-\frac{x^{n-1}}{(1-x)^{n-1}}}{1-\frac{x}{1-x}} \\ =& \frac{x^{n-1}}{(1-x)^{n+1}} + \frac{1-\frac{x^{n-1}}{(1-x)^{n-1}}}{1-2x} \\ =& \frac{1}{1-2x} + \frac{x^{n-1}}{(1-x)^{n+1}} - \frac{1}{1-2x} \frac{x^{n-1}}{(1-x)^{n-1}} \\ =& \frac{1}{1-2x} + \frac{x^{n-1}}{(1-x)^{n-1}} (\frac{1}{(1-x)^2} - \frac{1}{1-2x}) \\ =& \frac{1}{1-2x} + \frac{x^{n-1}}{(1-x)^{n-1}} \frac{-x^2}{(1-2x)(1-x)^2} \\ =& \frac{1}{1-2x} - \frac{1}{1-2x} \frac{x^{n+1}}{(1-x)^{n+1}} \end{aligned}$$ $\frac{1}{1-2x}$ 的第 $k$ 项是 $2^k$ , $\frac{1}{(1-x)^{n+1}}$ 的第 $k$ 项是 $C_{n+k}^{n}$ ,所以 $\frac{1}{1-2x} \frac{1}{(1-x)^{n+1}}$ 的第 $k$ 项是 $\sum_{i=0}^k C_{n+i}^{n} 2^{k-i}$ ,所以 $\frac{1}{1-2x} \frac{x^{n+1}}{(1-x)^{n+1}}$ 的第 $k$ 项是 $$\begin{cases} 0 & k \le n \\ \sum_{i=0}^{k-n-1} C_{n+i}^{n} 2^{k-n-1-i} & k > n \end{cases}$$ 所以 $G_n(x)$ 的第 $k$ 项是 $$\begin{cases} 2^k & k \le n \\ 2^k - \sum_{i=0}^{k-n-1} C_{n+i}^{n} 2^{k-n-1-i} & k > n \end{cases}$$ ~~咦?怎么跟 yamengxi 的不太一样?~~ 此外,我完全看不出这个东西怎么能化简到 $\sum_{i=0}^n C_k^i$ ,希望未来有大佬可以补上这个证明。