P7857 Solution
NaCly_Fish · · 题解
update:修复了一些 typo。
出题人迟迟没发题解,那我来水一篇。
先考虑「有根有标号二叉树」数量的 EGF,设为
设「有标号有根树」数量的 EGF 为
这个也容易理解,要求二叉树恰好有
众所周知,alpha1022 喜欢出拉格朗日反演题。那么我们如何用拉格朗日反演呢?根据 EI 的指导,可以将其化为扩展拉格朗日反演的形式。
设
直接使用拉格朗日反演就有
那一大坨式子可以分成两部分,分别计算后提取系数即可。
现在再考虑如何求
只要求出
代入有标号有根树的方程中:
牛顿迭代求解即可,时间复杂度
补个代码,为了可读性没做什么优化:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 524292
#define ll long long
#define reg register
#define p 998244353
using namespace std;
inline int add(const int& x,const int& y){ return x+y>=p?x+y-p:x+y; }
inline int dec(const int& x,const int& y){ return x<y?x-y+p:x-y; }
inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = (ll)res*a%p;
a = (ll)a*a%p;
t >>= 1;
}
return res;
}
int siz;
int rev[N],rt[N],inv[N],fac[N],ifac[N];
void init(int n){
int lim = 1;
while(lim<=n) lim <<= 1,++siz;
for(reg int i=0;i!=lim;++i) rev[i] = (rev[i>>1]>>1)|((i&1)<<(siz-1));
int w = power(3,(p-1)>>siz);
inv[1] = rt[lim>>1] = fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
for(reg int i=(lim>>1)+1;i!=lim;++i) rt[i] = (ll)rt[i-1]*w%p;
for(reg int i=(lim>>1)-1;i;--i) rt[i] = rt[i<<1];
for(reg int i=2;i<=n;++i) inv[i] = (ll)(p-p/i)*inv[p%i]%p;
for(int i=2;i<=n;++i) fac[i] = (ll)fac[i-1]*i%p;
ifac[n] = power(fac[n],p-2);
for(int i=n-1;i;--i) ifac[i] = (ll)ifac[i+1]*(i+1)%p;
}
inline void dft(int *f,int n){
static unsigned long long a[N];
reg int x,shift = siz-__builtin_ctz(n);
for(reg int i=0;i!=n;++i) a[rev[i]>>shift] = f[i];
for(reg int mid=1;mid!=n;mid<<=1)
for(reg int j=0;j!=n;j+=(mid<<1))
for(reg int k=0;k!=mid;++k){
x = a[j|k|mid]*rt[mid|k]%p;
a[j|k|mid] = a[j|k]+p-x;
a[j|k] += x;
}
for(reg int i=0;i!=n;++i) f[i] = a[i]%p;
}
inline void idft(int *f,int n){
reverse(f+1,f+n);
dft(f,n);
int x = p-((p-1)>>__builtin_ctz(n));
for(reg int i=0;i!=n;++i) f[i] = (ll)f[i]*x%p;
}
inline int getlen(int n){
return 1<<(32-__builtin_clz(n));
}
inline void inverse(const int *f,int n,int *r){
static int g[N],h[N],st[30];
memset(g,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
while(n){
st[++top] = n;
n >>= 1;
}
g[0] = f[0]==1?1:p-1;
while(top--){
n = st[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,f,(n+1)<<2);
memset(h+n+1,0,(lim-n)<<2);
dft(g,lim),dft(h,lim);
for(reg int i=0;i!=lim;++i) g[i] = g[i]*(2-(ll)g[i]*h[i]%p+p)%p;
idft(g,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(r,g,(n+1)<<2);
}
inline void log(const int *f,int n,int *r){
static int g[N],h[N];
inverse(f,n,g);
for(reg int i=0;i!=n;++i) h[i] = (ll)f[i+1]*(i+1)%p;
h[n] = 0;
int lim = getlen(n<<1);
memset(g+n+1,0,(lim-n)<<2);
memset(h+n+1,0,(lim-n)<<2);
dft(g,lim),dft(h,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
idft(g,lim);
for(reg int i=1;i<=n;++i) r[i] = (ll)g[i-1]*inv[i]%p;
r[0] = 0;
}
inline void exp(const int *f,int n,int *r){
static int g[N],h[N],st[30];
memset(g,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
while(n){
st[++top] = n;
n >>= 1;
}
g[0] = 1;
while(top--){
n = st[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,g,(n+1)<<2);
memset(h+n+1,0,(lim-n)<<2);
log(g,n,g);
for(reg int i=0;i<=n;++i) g[i] = dec(f[i],g[i]);
g[0] = add(g[0],1);
dft(g,lim),dft(h,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
idft(g,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(r,g,(n+1)<<2);
}
inline void iterate(const int *h,int n,int *r){
static int f[N],g[N],_h[N],fz[N],st[30];
memset(f,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
while(n){
st[++top] = n;
n >>= 1;
}
f[0] = 1;
while(top--){
n = st[top+1];
while(lim<=(n<<1)) lim <<= 1;
exp(f,n,g);
memcpy(_h,h,(n+1)<<2);
memset(_h+n+1,0,(lim-n)<<2),memset(g+n+1,0,(lim-n)<<2);
dft(g,lim),dft(_h,lim);
for(int i=0;i!=lim;++i) g[i] = (ll)g[i]*_h[i]%p;
idft(g,lim);
memset(g+n+1,0,(lim-n)<<2);
for(int i=0;i<=n;++i) fz[i] = dec(g[i],f[i]);
g[0] = p-1;
inverse(g,n,g);
memset(fz+n+1,0,(lim-n)<<2);
dft(fz,lim),dft(g,lim);
for(int i=0;i!=lim;++i) g[i] = (ll)g[i]*fz[i]%p;
idft(g,lim);
for(int i=0;i<=n;++i) f[i] = dec(f[i],g[i]);
}
memcpy(r,f,(n+1)<<2);
}
int n,lim;
int A[N],h[N],hpw[N],dA[N],f[N];
const int inv2 = 499122177;
int main(){
scanf("%d",&n);
init(n<<1);
h[0] = 0,hpw[0] = h[1] = 1;
for(int i=2;i<=n;++i){ // 递推算 h(x)
h[i] = (h[i-1]+(ll)inv2*h[i-2])%p;
h[i] = h[i]==0?0:p-h[i];
}
hpw[1] = n; // (x/h(x))^n
for(int i=1;i<n;++i) hpw[i+1] = (((ll)n*(hpw[i]+hpw[i-1])%p-(ll)inv2*(i-1)%p*hpw[i-1]-(ll)i*hpw[i])%p+p)*inv[i+1]%p;
iterate(h,n,A);
A[1]--;
exp(A,n,A);
lim = getlen(n<<1);
for(int i=0;i<=n;++i) dA[i] = (ll)A[i]*i%p;
dft(hpw,lim),dft(A,lim),dft(dA,lim);
for(int i=0;i!=lim;++i){
A[i] = (ll)A[i]*hpw[i]%p;
dA[i] = (ll)dA[i]*hpw[i]%p;
}
idft(A,lim),idft(dA,lim);
for(int s=0;s<=n;++s){
int ans = ((ll)s*A[n-s]+dA[n-s])%p*fac[n-1]%p*ifac[s]%p;
printf("%d ",ans);
}
return 0;
}