题解P4546【[THUWC2017]在美妙的数学王国中畅游】
Unknown_Error · · 题解
LCT+泰勒展开
首先e^x求导完是ln e * e^x还是e^x
sin x求导完变成cos x,cos x求导完变成sin x
由于复合函数f(g(x))求导完是f'(g(x))*g'(x)
所以就可以轻松的推出sin x和e^x的n阶导数
对于泰勒展开的那个公式,我们发现x0=0.5时,每一项的系数为1/2/n!,到了后面对ans的影响非常小,可以忽略,于是我们只要把多项式的前14项提出来就好。
接下来动态树上的操作用Link Cut Tree维护一下就ok了
代码(有点长)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include <complex>
#include <bitset>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#define rep(i, a, b) for(int (i) = (a), __omega = (b); (i) <= __omega; ++(i))
#define down(i, a, b) for(int (i) = (a), __omega = (b); (i) >= (b); --(i))
#define openfile(name) freopen(name".in", "r", stdin), freopen(name".out", "w", stdout)
using namespace std;
const double x0 = 0.5;
const int bit = 14;
double frac[20];
void init_frac() { frac[0] = 1; for(int i = 1; i <= bit; ++i) frac[i] = frac[i-1]*i; } //预处理阶乘
//sin(x)的n阶导
double diff_sin(int n, double x) {
double k = ((n&3) == 0 || (n&3) == 1) ? 1 : -1;
if(n&1) return k*cos(x); else return k*sin(x);
}
struct poly {
double a[20];
friend poly operator+(poly a, poly b) {
for(int i = bit; ~i; --i) a.a[i] += b.a[i]; return a;
}
double operator()(double x) {
x -= x0; double res = 0;
for(int i = bit; ~i; --i) res *= x, res += a[i];
return res;
}
void get_line(double A, double B) {
memset(a, 0, sizeof(double)*20);
a[0] = B+x0*A; a[1] = A;
}
void get_sin(double A, double B) {
memset(a, 0, sizeof(double)*20);
double xx = A*x0+B;
double an = 1;
for(int i = 0; i <= bit; ++i) {
a[i] = an*diff_sin(i, xx)/frac[i];
an = an*A;
}
}
void get_exp(double A, double B) {
memset(a, 0, sizeof(double)*20);
double xx = A*x0+B;
double an = 1;
for(int i = 0; i <= bit; ++i) {
a[i] = an*exp(xx)/frac[i];
an = an*A;
}
}
};
struct node *nul;
struct node {
node *son[2], *top, *fa;
poly val, sum;
int rev;
void reverse() { rev ^= 1; swap(son[0], son[1]); }
void push_up() { sum = val+(son[0]->sum)+(son[1]->sum); }
void push_down() {
if(rev) {
rev ^= 1;
son[0]->reverse();
son[1]->reverse();
}
}
int pos() { return fa->son[1] == this; }
void rotate() {
int d = pos(); node *y = fa;
y->push_down(); push_down();
top = y->top;
if(y->fa != nul) y->fa->son[y->pos()] = this;
y->son[d] = son[d^1], son[d^1] = y;
if(y->son[d] != nul) y->son[d]->fa = y;
fa = y->fa, y->fa = this;
y->push_up(), push_up();
}
void splay() {
push_down();
for(node *y = fa; fa != nul; rotate())
if(y = fa, y->fa != nul) y->pos()^pos() ? rotate() : y->rotate();
push_up();
}
void expose(node *p = nul) {
splay();
if(son[1] != nul) {
son[1]->fa = nul;
son[1]->top = this;
}
son[1] = p;
if(p != nul) p->fa = this;
push_up();
}
} pos[100010];
node *access(node *x) {
for(x->expose(); x->top; x = x->top) x->top->expose(x);
return x;
}
void link(node *x, node *y) { x = access(x); x->reverse(); x->top = y; }
void cut(node *x, node *y) {
x->expose(), y->expose();
if(x->top == y) x->top = 0;
if(y->top == x) y->top = 0;
}
node *root(node *x) {
x = access(x);
for(; x->son[0] != nul; x = x->son[0]);
return x;
}
int n, m;
poly p[100010];
char spe[5];
int main() {
init_frac();
scanf("%d%d%s", &n, &m, spe);
nul = pos;
for(int i = 0; i <= n; ++i) {
(pos+i)->fa = (pos+i)->son[0] = (pos+i)->son[1] = nul;
}
for(int i = 1; i <= n; ++i) {
int type; double a, b;
scanf("%d%lf%lf", &type, &a, &b);
if(type == 1) {
p[i].get_sin(a, b);
} else if(type == 2) {
p[i].get_exp(a, b);
} else if(type == 3) {
p[i].get_line(a, b);
}
(pos+i)->val = (pos+i)->sum = p[i];
}
while(m--) {
static char str[20];
scanf("%s", str);
if(!strcmp(str, "appear")) {
int u, v;
scanf("%d%d", &u, &v);
u++, v++;
link(pos+u, pos+v);
} else if(!strcmp(str, "disappear")) {
int u, v;
scanf("%d%d", &u, &v);
u++, v++;
cut(pos+u, pos+v);
} else if(!strcmp(str, "magic")) {
int c, f; double a, b;
scanf("%d%d%lf%lf", &c, &f, &a, &b);
c++;
if(f == 1) {
p[c].get_sin(a, b);
} else if(f == 2) {
p[c].get_exp(a, b);
} else if(f == 3) {
p[c].get_line(a, b);
}
access(pos+c);
(pos+c)->sum = (pos+c)->val = p[c];
} else if(!strcmp(str, "travel")) {
int u, v; double x;
scanf("%d%d%lf", &u, &v, &x);
u++, v++;
if(root(pos+u) != root(pos+v)) {
puts("unreachable");
} else {
access(pos+u);
(pos+u)->splay();
(pos+u)->reverse();
poly f = access(pos+v)->sum;
printf("%.9lf\n", f(x));
}
} else {
puts("orz fjzzq2002!");
}
}
return 0;
}