题解 P7984 [USACO21DEC] Tickets P
题目难度:USACO P/省选
先想暴力做法。注意到一个人不会重复买票,所以我们可以把每种票看作虚拟节点,买票看作从
然而这样会喜提 WA 。因为仍然没有解决重复买票的问题,两条最短路的交集中的所有边被算了两遍。怎么解决?先记当前答案为
时间复杂度:
下面提供两种优化的思路,第一种是考场第一眼看出的线段树优化建图,具体知识可以参考这个博客 DS优化建图 。
对区间中的每个点暴力连边是不好的!我们用线段树建图的方式连边,时间复杂度为
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define ll long long
using namespace std;
inline ll read(){
ll x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
const int N=1e6+5,M=7e6+5;
const ll inf=1e16;
int head[N],cnt;
struct Edge{
int to,nxt,w;
}e[M];
inline void add(int u,int v,int w){e[++cnt]={v,head[u],w};head[u]=cnt;}
int n,q,s;
struct Node{int l,r;}t[N];
#define ls (p<<1)
#define rs (ls|1)
inline void build(int p,int l,int r){
t[p].l=l,t[p].r=r;
if(l==r){//叶子节点与原图加边
add(l+8*n,p,0);add(p+4*n,l+8*n,0);
add(p,l+8*n,0);add(l+8*n,p+4*n,0);
return;
}
//向儿子连边
add(p,ls,0);add((ls)+4*n,p+4*n,0);
add(p,rs,0);add((rs)+4*n,p+4*n,0);
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
}
inline void upd(int p,int L,int R,int u,int w){
int l=t[p].l,r=t[p].r,mid=(l+r)>>1;
if(l==L&&r==R){//当前节点覆盖区间
add(p+4*n,u+8*n,w);
return;
}
if(R<=mid)upd(ls,L,R,u,w);
else if(L>mid)upd(rs,L,R,u,w);
else{
upd(ls,L,mid,u,w);upd(rs,mid+1,R,u,w);
}
}
ll dis[N],d[N];
struct node{
ll dis;int pos;
bool operator <( const node &x )const{
return x.dis < dis;
}
};
bool vis[N];
priority_queue <node> pq;
inline void dijkstra(bool op=0){
if(!op){
memset(dis,0x3f,sizeof(dis));
dis[s]=0;pq.push({0,s});
}else{
rep(i,1,9*n+q)pq.push({dis[i],i});
}
memset(vis,0,sizeof(vis));
while(!pq.empty()){
node tmp=pq.top();pq.pop();
int x=tmp.pos;
if(vis[x])continue;
vis[x]=1;
for(int i=head[x];i;i=e[i].nxt){
int y=e[i].to;
if(dis[y]>dis[x]+e[i].w){
dis[y]=dis[x]+e[i].w;
pq.push({dis[y],y});
}
}
}
}
int main(){
n=read(),q=read();
build(1,1,n);
rep(i,1,q){
int a=read(),w=read(),b=read(),c=read();
upd(1,b,c,i+n,0);
add(9*n+i,a+8*n,w);
}
s=8*n+1;
dijkstra();
memcpy(d,dis,sizeof(d));
//rep(i,1,n)cout<<dis[i+8*n]<<' ';
s=9*n;
dijkstra();
rep(i,1,9*n+q)dis[i]+=d[i];
dijkstra(1);
rep(i,1,n){
if(dis[i+8*n]>inf)puts("-1");
else printf("%lld\n",dis[i+8*n]);
}
return 0;
}
如何优化?考虑 dijkstra 时实际上在做什么。原图中的节点会影响将它包含的票的虚拟节点,然后这个虚拟节点仅影响其所对应的一个原图节点
第二种做法来自 Benq 的题解。同样利用上面的性质,对所有票按左端点升序排列,注意到每个门票最多入队一次,建一棵势能线段树维护一段区间的所有票右端点的最大值即可。在每个票入队后打上标记,均摊分析可以得出复杂度为
时间复杂度:
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
#define pii pair<int,int>
#define vi vector<int>
#define fi first
#define se second
#define pb push_back
#define ALL(x) x.begin(),x.end()
#define sz(x) int(x.size())
#define ll long long
using namespace std;
inline ll read(){
ll x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
const int N=2e5+5;
const ll inf = 1e18;
struct ticket{int c,p,a,b;};
bool cmp(ticket x,ticket y){return x.a<y.a;}
struct SegTree{
int n,sz;
vector <int> mx;
vector <ticket> tickets;
#define ls (p<<1)
#define rs (ls|1)
void pushup(int p){mx[p]=max(mx[ls],mx[rs]);}
SegTree(vector <ticket> tickets) : tickets(tickets){//初始化
n = 1;
sz = sz(tickets);
while(n < sz)n<<=1;
mx.assign(2*n,0);
rep(i,0,n-1){
if(i < sz){
mx[i+n] = tickets[i].b;
}else mx[i+n] = -1;
}
per(i,n-1,1)pushup(i);
}
//找到所有可能转移的门票并移除
void remove(vector <int> &v,int x,int p=1,int L=0,int R=-1){
if(R==-1)R+=n;
if(L>=sz||tickets[L].a>x||mx[p]<x)return;
if(L==R){
mx[p] = -1;
v.pb(L);
return;
}
int mid = (L+R)>>1;
remove(v,x,ls,L,mid),remove(v,x,rs,mid+1,R);
pushup(p);
}
};
void Min(ll &a,const ll b){if(a>b)a=b;}
int main(){
int n=read(),k=read();
vector <ticket> tickets(k);
for(auto &t: tickets){
t.c=read()-1,t.p=read(),t.a=read()-1,t.b=read()-1;
}
sort(ALL(tickets),cmp);
auto Dij = [&](vector<ll> &dis){//Dijkstra
priority_queue <pair<ll,int>> pq;
rep(i,0,k-1){
Min(dis[tickets[i].c],dis[i+n]+tickets[i].p);
}
rep(i,0,n-1){
if(dis[i]<inf)pq.push({-dis[i],i});
}
SegTree seg(tickets);
while(!pq.empty()){
pii x = pq.top();
pq.pop();
if(-x.fi>dis[x.se])continue;
vector <int> vec;
seg.remove(vec,x.se);//找到转移的门票
for(int t : vec){
if(dis[t+n] > dis[x.se]){
dis[t+n] = dis[x.se];
if(dis[tickets[t].c] > dis[x.se] + tickets[t].p){
dis[tickets[t].c] = dis[x.se] + tickets[t].p;
pq.push({-dis[tickets[t].c],tickets[t].c});
}
}
}
}
};
//三次最短路
vector <ll> L(n+k,inf),R(n+k,inf),dis(n+k);
L[0]=0,R[n-1]=0;
Dij(L),Dij(R);
rep(i,0,n+k-1)dis[i] = L[i] + R[i];
Dij(dis);
rep(i,0,n-1){
if(dis[i]<inf)printf("%lld\n",dis[i]);
else puts("-1");
}
return 0;
}