吊打倍增分块
Description
给定长为
1 l r k:对于所有l\le i\le r ,执行a_i \leftarrow a_i -k\times[a_i \neq k] 。2 l r:求(\sum\limits_{i=l}^r a_i) \bmod 2^{64} 。
Limitations
本题强制在线
Solution
考虑上线段树,但
下面设当前节点的最小值为
若
若
若
综上述,时间复杂度
Code
// Problem: P9069 [Ynoi Easy Round 2022] 堕天作战 TEST_98
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P9069
// Memory Limit: 512 MB
// Time Limit: 6000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
constexpr ui64 inf = ULLONG_MAX;
namespace seg_tree {
struct Node {
int l, r, cnt;
ui64 sum, min, sec, tag, mark;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
inline SegTree() {}
inline SegTree(const vector<int>& a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
inline void pushup(int u, int mid) {
tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
if (tr[ls(mid)].min == tr[rs(mid)].min) {
tr[u].min = tr[ls(mid)].min;
tr[u].cnt = tr[ls(mid)].cnt + tr[rs(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].sec);
}
else if (tr[ls(mid)].min < tr[rs(mid)].min) {
tr[u].min = tr[ls(mid)].min;
tr[u].cnt = tr[ls(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].sec, tr[rs(mid)].min);
}
else {
tr[u].min = tr[rs(mid)].min;
tr[u].cnt = tr[rs(mid)].cnt;
tr[u].sec = min(tr[ls(mid)].min, tr[rs(mid)].sec);
}
}
inline void apply_tag(int u, ui64 tag) {
int len = tr[u].r - tr[u].l + 1;
tr[u].sum -= tag * len;
tr[u].min -= tag;
tr[u].sec -= tag;
tr[u].tag += tag;
}
inline void apply_mark(int u, ui64 tag) {
const int len = tr[u].r - tr[u].l + 1;
tr[u].sum -= tag * (len - tr[u].cnt);
tr[u].sec -= tag;
tr[u].mark += tag;
}
inline void pushdown(int u, int mid) {
if (tr[u].tag) {
apply_tag(ls(mid), tr[u].tag);
apply_tag(rs(mid), tr[u].tag);
tr[u].tag = 0;
}
if (tr[u].mark) {
if (tr[ls(mid)].min == tr[u].min) apply_mark(ls(mid), tr[u].mark);
else apply_tag(ls(mid), tr[u].mark);
if (tr[rs(mid)].min == tr[u].min) apply_mark(rs(mid), tr[u].mark);
else apply_tag(rs(mid), tr[u].mark);
tr[u].mark = 0;
}
}
inline void build(int u, int l, int r, const vector<int>& a) {
tr[u].l = l, tr[u].r = r;
if (l == r) {
tr[u].sum = tr[u].min = a[l];
tr[u].cnt = 1;
tr[u].sec = inf;
return;
}
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
inline void defeat(int u, ui64 val) {
const int len = tr[u].r - tr[u].l + 1;
if (tr[u].min == val && len == tr[u].cnt) return;
if (tr[u].l == tr[u].r) {
tr[u].sum -= val;
tr[u].min = tr[u].sum;
return;
}
if (tr[u].min < val || tr[u].sec <= val * 2) {
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
defeat(ls(mid), val);
defeat(rs(mid), val);
return pushup(u, mid);
}
if (tr[u].min == val) apply_mark(u, val);
else apply_tag(u, val);
}
inline void modify(int u, int l, int r, ui64 val) {
if (l <= tr[u].l && tr[u].r <= r) return defeat(u, val);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) modify(ls(mid), l, r, val);
if (r > mid) modify(rs(mid), l, r, val);
pushup(u, mid);
}
inline ui64 query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
const int mid = (tr[u].l + tr[u].r) >> 1;
ui64 res = 0;
pushdown(u, mid);
if (l <= mid) res += query(ls(mid), l, r);
if (r > mid) res += query(rs(mid), l, r);
return res;
}
inline void range_subtract(int l, int r, ui64 x) { modify(0, l, r, x); }
inline ui64 range_sum(int l, int r) { return query(0, l, r); }
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m; scanf("%d %d", &n, &m);
vector<int> a(n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
SegTree sgt(a);
ui64 lst = 0;
for (int i = 0, op, l, r, x; i < m; i++) {
scanf("%d %d %d", &op, &l, &r);
l ^= lst, r ^= lst, l--, r--;
if (op == 1) {
scanf("%d", &x), x ^= lst;
if (x != 0) sgt.range_subtract(l, r, (ui64)x);
}
else {
printf("%llu\n", lst = sgt.range_sum(l, r));
lst &= 1048575;
}
}
return 0;
}