题解 P6843 【[BalticOI 2015]File Paths】

· · 题解

题解

题目实际在求这样一个东西:给定一棵树和边权,你可以在树中加上一条长为 S 的有向边

对于每个叶子节点问:是否能构造出一条从根节点出发以该节点为终点的长为 K 的路径

设有一个叶子节点 x

情况1

根到 x 的路径长等于 K

那显然答案就是 Yes

情况2

走了一次附加的有向边使得路径长为 K

考虑这条有向边的终点在哪里:由于走过这条有向边之后还要从它的终点走到 x,所以有向边的终点一定要是 x 的一个祖先

记点 p 的深度是 d_p,那么假设走了一条 p\rightarrow q 的有向边,总长度就是 d_p+S+(d_x-d_q)

其中,p 是树上的任意一个非叶子节点,q 必须是 x 的祖先

要判断是否有 p,q 满足 d_p+S+(d_x-d_q)=K,可以考虑枚举 q,这样就确定了 d_x-d_q,预处理出 d_p+S 可以取哪些值(存在一个 bool 数组里),如果存在某个 p 使得 d_p+S=K-(d_x-d_q) 那么 x 的答案就是 Yes

一个例子

情况3

当然,可能可以走很多次附加的有向边(在一个环上一直绕)

如果一条有向边可以走很多次,那么必须满足它的终点是起点的祖先

又因为终点要是 x 的祖先,所以现在需要找到这样一条路径 p\rightarrow q

满足 d_x+t*(d_p-d_q+S)=K (t 为一个正整数)

其中 qx 的祖先,pq 子树中一个非叶子节点

在dfs时,每到一个非叶子节点就再把以它为根的子树遍历一遍,把所有合法的 d_p-d_q+S 存在 bool 数组里,并在回溯时清除贡献

枚举 K-d_x 的所有约数,判断是否有满足条件的 d_p-d_q+S 即可

时间复杂度 O((n+m)^2+m\sqrt{K})

#include <bits/stdc++.h>
#define N 20005
using namespace std;
typedef long long ll;

template <typename T>
inline void read(T &num) {
    T x = 0, ff = 1; char ch = getchar();
    for (; ch > '9' || ch < '0'; ch = getchar()) if (ch == '-') ff = -1;
    for (; ch <= '9' && ch >= '0'; ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ '0');
    num = x * ff;
}

int n, ccf, K, S, a[N], d[N];
int head[N], pre[N<<1], to[N<<1], sz;
int ok[1000005], ok2[1000005], ans[N];

inline void addedge(int u, int v) {
    pre[++sz] = head[u]; head[u] = sz; to[sz] = v;
    pre[++sz] = head[v]; head[v] = sz; to[sz] = u;
}

void dfs1(int x, int fa) {
    if (d[x]+S <= 1000000 && x <= ccf) ok[d[x]+S]++;
    for (int i = head[x]; i; i = pre[i]) {
        int y = to[i];
        if (y == fa) continue;
        d[y] = d[x] + a[y];
        dfs1(y, x);
    }
} 

void dfs3(int x, int fa, int rt, int v) {
    if (x > ccf) return;
    int now = d[x] - d[rt] + S;
    if (now <= 1000000) ok2[now] += v;
    for (int i = head[x]; i; i = pre[i]) {
        int y = to[i];
        if (y != fa) dfs3(y, x, rt, v);
    }
}

int stk[N], top;

void solve(int x) {
    if (d[x] == K) {
        ans[x] = 1; return;
    }
    for (int i = 1; i <= top; i++) {
        int y = stk[i];
        int v = d[x] - d[y];
        if (v <= K && ok[K-v]) ans[x] = 1;
    }
    if (d[x] < K) {
        int v = K - d[x];
        for (int i = 1; i * i <= v; i++) {
            if (v % i == 0) {
                if (ok2[i] || ok2[v/i]) ans[x] = 1;
            }
        }
    }
}

void dfs2(int x, int fa) {
    if (x > ccf) {
        solve(x);
        return;
    }
    stk[++top] = x;
    dfs3(x, fa, x, 1);
    for (int i = head[x]; i; i = pre[i]) {
        int y = to[i];
        if (y != fa) dfs2(y, x);
    }
    dfs3(x, fa, x, -1);
    top--;
}

int main() {
    read(n); read(ccf); read(K); read(S); S++;
    swap(ccf, n); n += ccf;
    for (int i = 1, p; i <= n; i++) {
        read(p); read(a[i]); a[i]++;
        addedge(p, i);
    }
    dfs1(0, 0);
    dfs2(0, 0);
    for (int i = ccf + 1; i <= n; i++) puts(ans[i]?"YES":"NO");
    return 0;
}