题解 P5631 【最小mex生成树】
因为
那么就有一个比较显然的做法:枚举答案
这样直接暴力去做的复杂度是
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 1e6 + 50, M = 4e6 + 50;
int head[N], to[M], nxt[M], val[M], tot;
bool vis[N];
int fa[N], siz[N], cnt, n, m, ans = 0x3f3f3f3f;
struct node {
int u, v, w;
}e[M];
bool operator < (const node &a, const node &b) {
return a.w < b.w;
}
int find(int x) { return x == fa[x] ? x : find(fa[x]); }
int unit(int x, int y) {
int fx = find(x), fy = find(y);
if(fx == fy) return 0;
if(siz[fx] > siz[fy]) { fa[fy] = fx; siz[fx] += siz[fy]; return fy; }
else { fa[fx] = fy; siz[fy] += siz[fx]; return fx; }
}
void del(int x) {
siz[fa[x]] -= siz[x];
fa[x] = x;
}
void solve(int l, int r, int pos) {
if(l == r) { if(siz[find(1)] == n) { cout << l; exit(0);} return ; }
int mid = (l + r) >> 1;
int tmp = pos, lsbl = 0;
vector <int> v;
for(; e[pos].w <= r && pos <= m; ++ pos) if((e[pos].w > mid) && (lsbl = unit(e[pos].u, e[pos].v))) v.push_back(lsbl);
solve(l, mid, tmp);
for(int i = v.size() - 1; i >= 0; -- i) del(v[i]); v.clear();
pos = tmp, lsbl = 0;
for(; e[pos].w <= mid && pos <= m; ++ pos) if(lsbl = unit(e[pos].u, e[pos].v)) v.push_back(lsbl);
solve(mid + 1, r, pos);
for(int i = v.size() - 1; i >= 0; -- i) del(v[i]); v.clear();
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++ i) fa[i] = i, siz[i] = 1;
for(int i = 1; i <= m; ++ i) scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
sort(e + 1, e + 1 + m);
solve(0, e[m].w + 1, 1);
return 0;
}