【题解】P4119 [Ynoi2018] 未来日记
更好的阅读体验
题意
P4119 [Ynoi2018] 未来日记
给定一个长度为
-
将
[l, r] 内的所有值x 改为值y -
查询
[l, r] 内第k 小的值
相同的值算多次。
思路
最初分块。
分块 + 值域分块 + 并查集。
显然思路是二分套树状数组求静态
考虑用值域分块代替二分。
将值域
令
询问散块直接暴力 nth_element
询问
假设询问第
首先确定第
然后枚举值域块内的值,用类似上面的方法求出第
类似于 P4117 [Ynoi2018] 五彩斑斓的世界,维护 pos[i] = rt[ bel[i] ][ a[i] ]
小优化,并查集的根编号不必用数组下标。
修改整块
-
块
i 内无x ,跳过; -
块
i 内有x 无y ,令rt[i][y] = rt[i][x], val[i][ rt[i][x] ] = y, rt[i][x] = 0,相应修改sum1 和sum2 -
块
i 内有x 有y 。显然序列中出现过的不同值个数最多为n + m ,这种情况下每次块内值的个数会减少1 ,暴力重构均摊总复杂度是\mathcal{O}((n + m)\sqrt{n}) ,直接暴力即可
时间复杂度
代码
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn = 1e5 + 5;
const int maxk = 320;
int n, m;
int block, tot;
int st[maxk], ed[maxk];
int a[maxn], bel[maxn];
int cnt1[maxk], sum1[maxk][maxk];
int cnt2[maxn], sum2[maxk][maxn];
int rt[maxk][maxn], val[maxk][maxn], pos[maxn];
void reduce(int idx) {
for (int i = st[idx]; i <= ed[idx]; i++) {
a[i] = val[idx][pos[i]];
}
}
void build(int idx) {
int cur = 0;
for (int i = 1; i <= block; i++) {
rt[idx][val[idx][i]] = 0;
}
for (int i = st[idx]; i <= ed[idx]; i++) {
if (!rt[idx][a[i]]) {
cur++;
rt[idx][a[i]] = cur;
val[idx][cur] = a[i];
}
pos[i] = rt[idx][a[i]];
}
}
void modify(int l, int r, int x, int y) {
for (int i = l; i <= r; i++) {
if (a[i] == x) {
sum1[bel[i]][bel[x]]--;
sum1[bel[i]][bel[y]]++;
sum2[bel[i]][x]--;
sum2[bel[i]][y]++;
a[i] = y;
}
}
}
void merge(int idx, int x, int y) {
rt[idx][y] = rt[idx][x];
val[idx][rt[idx][x]] = y;
rt[idx][x] = 0;
}
void update(int l, int r, int x, int y) {
if ((x == y) || (sum2[bel[r]][x] - sum2[bel[l] - 1][x] == 0)) {
return;
}
for (int i = bel[n]; i >= bel[l]; i--) {
sum1[i][bel[x]] -= sum1[i - 1][bel[x]];
sum1[i][bel[y]] -= sum1[i - 1][bel[y]];
sum2[i][x] -= sum2[i - 1][x];
sum2[i][y] -= sum2[i - 1][y];
}
if (bel[l] == bel[r]) {
reduce(bel[l]);
modify(l, r, x, y);
build(bel[l]);
for (int i = bel[l]; i <= bel[n]; i++) {
sum1[i][bel[x]] += sum1[i - 1][bel[x]];
sum1[i][bel[y]] += sum1[i - 1][bel[y]];
sum2[i][x] += sum2[i - 1][x];
sum2[i][y] += sum2[i - 1][y];
}
} else {
reduce(bel[l]);
modify(l, ed[bel[l]], x, y);
build(bel[l]);
reduce(bel[r]);
modify(st[bel[r]], r, x, y);
build(bel[r]);
for (int i = bel[l] + 1; i < bel[r]; i++) {
if (!sum2[i][x]) {
continue;
} else if (sum2[i][y]) {
reduce(i);
modify(st[i], ed[i], x, y);
build(i);
} else {
sum1[i][bel[y]] += sum2[i][x];
sum1[i][bel[x]] -= sum2[i][x];
sum2[i][y] += sum2[i][x];
sum2[i][x] = 0;
merge(i, x, y);
}
}
for (int i = bel[l]; i <= bel[n]; i++) {
sum1[i][bel[x]] += sum1[i - 1][bel[x]];
sum1[i][bel[y]] += sum1[i - 1][bel[y]];
sum2[i][x] += sum2[i - 1][x];
sum2[i][y] += sum2[i - 1][y];
}
}
}
int query(int l, int r, int k) {
int ans, sum = 0;
if (bel[l] == bel[r]) {
reduce(bel[l]);
for (int i = l; i <= r; i++) {
cnt2[i] = a[i];
}
nth_element(cnt2 + l, cnt2 + l + k - 1, cnt2 + r + 1);
ans = cnt2[l + k - 1];
for (int i = l; i <= r; i++) {
cnt2[i] = 0;
}
return ans;
}
reduce(bel[l]);
for (int i = l; i <= ed[bel[l]]; i++) {
cnt1[bel[a[i]]]++;
cnt2[a[i]]++;
}
reduce(bel[r]);
for (int i = st[bel[r]]; i <= r; i++) {
cnt1[bel[a[i]]]++;
cnt2[a[i]]++;
}
for (int i = 1; i <= bel[100000]; i++) {
if ((sum + cnt1[i] + sum1[bel[r] - 1][i] - sum1[bel[l]][i]) >= k) {
for (int j = (i - 1) * block + 1; j <= i * block; j++) {
if ((sum + cnt2[j] + sum2[bel[r] - 1][j] - sum2[bel[l]][j]) >= k) {
for (int k = l; k <= ed[bel[l]]; k++) {
cnt1[bel[a[k]]]--;
cnt2[a[k]]--;
}
for (int k = st[bel[r]]; k <= r; k++) {
cnt1[bel[a[k]]]--;
cnt2[a[k]]--;
}
return j;
} else {
sum += (cnt2[j] + sum2[bel[r] - 1][j] - sum2[bel[l]][j]);
}
}
} else {
sum += (cnt1[i] + sum1[bel[r] - 1][i] - sum1[bel[l]][i]);
}
}
}
int main() {
int opt, l, r, x, y, k;
scanf("%d%d", &n, &m);
block = sqrt(n);
tot = ceil(n * 1.0 / block);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1; i < maxn; i++) {
bel[i] = (i - 1) / block + 1;
}
for (int i = 1; i <= tot; i++) {
st[i] = (i - 1) * block + 1;
ed[i] = i * block;
}
ed[tot] = n;
for (int i = 1; i <= tot; i++) {
build(i);
}
for (int i = 1; i <= tot; i++) {
for (int j = 1; j < maxk; j++) {
sum1[i][j] = sum1[i - 1][j];
}
for (int j = 1; j < maxn; j++) {
sum2[i][j] = sum2[i - 1][j];
}
for (int j = st[i]; j <= ed[i]; j++) {
sum1[i][bel[a[j]]]++;
sum2[i][a[j]]++;
}
}
for (int i = 1; i <= m; i++) {
scanf("%d", &opt);
if (opt == 1) {
scanf("%d%d%d%d", &l, &r, &x, &y);
update(l, r, x, y);
} else {
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", query(l, r, k));
}
}
return 0;
}