题解:【ICPC WF 2021 K】 Take On Meme

· · 题解

心碎的阅读体验

题目链接

可以直接求闵可夫斯基和,这里介绍一种官解。

按照题面的两个评分尺度构建坐标系,将所有可能的 1 号节点分值放在平面上,那么最后的答案一定在凸包上。如果我们知道答案的最终方向,那么问题就比较简单了:就是直接寻找特定方向上最远的点(那么就是找一个点使其与选定点的点积最大),只需要让和这个方向点积的贡献最短就行了。虽然我们并不知道方向是什么,不过可以随便钦定一个方向,求点积最大和最小的点,这样一定可以找到凸包上的两个点,这个可以直接树形 DP 做。再以这两个点的连线的垂线为方向,如果凸包上还有点那么一定可以找到新的凸包上的点。反复重复这个过程,知道找出的点积最大和最小的点重合,这时候找齐了凸包上的所有点。找点的时候顺便直接统计答案即可。

这样复杂度是凸包上的点数乘 n 的,因为做一遍树形 DP 是 \mathcal O(n),一次只能找到凸包上两个点。不过这样就留下了一个问题:凸包上到底有多少个点,复杂度是否正确?注意到给定的点的坐标都是整数,整点凸包上的点的数量级是我们已经解决的问题。于是总复杂度为 \mathcal O(T^{\frac{2}{3}} n),其中 T \leq 10^7

#include<bits/stdc++.h>
#define int long long
#define ld long double
#define ui unsigned int
#define ull unsigned long long
#define eb emplace_back
#define pb pop_back
#define ins insert
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define power(x) ((x)*(x))
#define gcd(x,y) (__gcd((x),(y)))
#define lcm(x,y) ((x)*(y)/gcd((x),(y)))
#define lg(x,y)  (__lg((x),(y)))
using namespace std;

namespace FastIO
{
    template<typename T=int> inline T read()
    {
        T s=0,w=1; char c=getchar();
        while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();}
        while(isdigit(c)) s=(s*10)+(c^48),c=getchar();
        return s*w;
    }
    template<typename T> inline void read(T &s)
    {
        s=0; int w=1; char c=getchar();
        while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();}
        while(isdigit(c)) s=(s*10)+(c^48),c=getchar();
        s=s*w;
    }
    template<typename T,typename... Args> inline void read(T &x,Args &...args)
    {
        read(x),read(args...);
    }
    template<typename T> inline void write(T x,char ch)
    {
        if(x<0) x=-x,putchar('-');
        static char stk[25]; int top=0;
        do {stk[top++]=x%10+'0',x/=10;} while(x);
        while(top) putchar(stk[--top]);
        putchar(ch);
        return;
    }
}
using namespace FastIO;

namespace MTool
{   
    #define TA template<typename T,typename... Args>
    #define TT template<typename T>
    static const int Mod=998244353;
    TT inline void Swp(T &a,T &b) {T t=a;a=b;b=t;}
    TT inline void cmax(T &a,T b) {a=a>b?a:b;}
    TT inline void cmin(T &a,T b) {a=a<b?a:b;}
    TT inline void Madd(T &a,T b) {a=a+b>Mod?a+b-Mod:a+b;}
    TT inline void Mdel(T &a,T b) {a=a-b<0?a-b+Mod:a-b;}
    TT inline void Mmul(T &a,T b) {a=a*b%Mod;}
    TT inline void Mmod(T &a) {a=(a%Mod+Mod)%Mod;}
    TT inline T Cadd(T a,T b) {return a+b>=Mod?a+b-Mod:a+b;}
    TT inline T Cdel(T a,T b) {return a-b<0?a-b+Mod:a-b;}
    TT inline T Cmul(T a,T b) {return a*b%Mod;}
    TT inline T Cmod(T a) {return (a%Mod+Mod)%Mod;}
    TA inline void Madd(T &a,T b,Args... args) {Madd(a,Cadd(b,args...));}
    TA inline void Mdel(T &a,T b,Args... args) {Mdel(a,Cadd(b,args...));}
    TA inline void Mmul(T &a,T b,Args... args) {Mmul(a,Cmul(b,args...));}
    TA inline T Cadd(T a,T b,Args... args) {return Cadd(Cadd(a,b),args...);}
    TA inline T Cdel(T a,T b,Args... args) {return Cdel(Cdel(a,b),args...);}
    TA inline T Cmul(T a,T b,Args... args) {return Cmul(Cmul(a,b),args...);}
    TT inline T qpow(T a,T b) {int res=1; while(b) {if(b&1) Mmul(res,a); Mmul(a,a); b>>=1;} return res;}
    TT inline T qmul(T a,T b) {int res=0; while(b) {if(b&1) Madd(res,a); Madd(a,a); b>>=1;} return res;}
    TT inline T spow(T a,T b) {int res=1; while(b) {if(b&1) res=qmul(res,a); a=qmul(a,a); b>>=1;} return res;}
    TT inline void exgcd(T A,T B,T &X,T &Y) {if(!B) return X=1,Y=0,void(); exgcd(B,A%B,Y,X),Y-=X*(A/B);}
    TT inline T Ginv(T x) {T A=0,B=0; exgcd(x,Mod,A,B); return Cmod(A);}
    #undef TT
    #undef TA
}
using namespace MTool;

inline void file()
{
    freopen(".in","r",stdin);
    freopen(".out","w",stdout);
    return;
}

bool Mbe;

namespace LgxTpre
{
    static const int MAX=10010;
    static const int inf=2147483647;
    static const int INF=4557430888798830399;
    static const int mod=1e9+7;
    static const int bas=131;

    namespace Geometry
    {
        struct Point
        {
            int x,y;
            Point(int X=0,int Y=0):x(X),y(Y) {}
            inline friend Point operator + (Point a,Point b) {return Point(a.x+b.x,a.y+b.y);}
            inline friend Point operator - (Point a,Point b) {return Point(a.x-b.x,a.y-b.y);}
            template<typename T> inline friend Point operator * (Point a,T b) {return Point(a.x*b,a.y*b);}
            template<typename T> inline friend Point operator / (Point a,T b) {return Point(a.x/b,a.y/b);}
            inline friend Point operator * (Point a,Point b) {return Point(a.x*b.x-a.y*b.y,a.y*b.x+a.x*b.y);}
            inline Point operator += (Point &T) {*this=*this+T; return *this;}
            inline Point operator -= (Point &T) {*this=*this-T; return *this;}
            template<typename T> inline Point operator *= (T &x) {*this=*this*x; return *this;}
            template<typename T> inline Point operator /= (T &x) {*this=*this/x; return *this;}
            inline Point operator *= (Point &T) {*this=*this*T; return *this;}
            inline friend bool operator == (Point a,Point b) {return a.x==b.x&&a.y==b.y;}
        };
        inline int Dot(Point a,Point b) {return a.x*b.x+a.y*b.y;}
        inline int Cross(Point a,Point b) {return a.x*b.y-a.y*b.x;}
        inline int Norm(Point a) {return sqrt(Dot(a,a));}
    }
    using namespace Geometry;

    int n,k,ans;
    Point p[MAX];
    vector<int> G[MAX];

    inline void lmy_forever()
    {
        auto Hull=[&](Point P)->pair<Point,Point>
        {
            auto comp=[&](Point A,Point B)->bool
            {
                return Dot(P,A)<Dot(P,B);
            };
            auto dfs=[&](auto dfs,int now)->pair<Point,Point>
            {
                if(G[now].empty()) return mp(p[now],p[now]);
                auto [sl,sr]=dfs(dfs,G[now][0]);
                Point vl,vr; vl=vr=sl+sr;
                for(int i=1;i<((int)G[now].size());++i)
                {
                    auto [l,r]=dfs(dfs,G[now][i]);
                    sl+=l,sr+=r;
                    if(comp(l+r,vl)) vl=l+r;
                    if(comp(vr,l+r)) vr=l+r;
                }
                return mp(vl-sr,vr-sl);
            };
            auto [l,r]=dfs(dfs,1);
            cmax(ans,Dot(l,l)),cmax(ans,Dot(r,r));
            return mp(l,r);
        };

        auto solve=[&](auto solve,Point a,Point b)->void
        {
            if(a==b) return;
            int x=(b-a).x,y=(b-a).y;
            Point c={-y,x};
            auto [_,d]=Hull(c);
            if(Dot(d,c)>max(Dot(a,c),Dot(b,c))) solve(solve,a,d),solve(solve,d,b);
        };

        read(n);
        for(int i=1;i<=n;++i)
        {
            read(k);
            if(!k) read(p[i].x,p[i].y);
            else for(int j=1;j<=k;++j) G[i].eb(read());
        }
        auto [a,b]=Hull((Point){1,0});
        solve(solve,a,b);
        write(ans,'\n');
        return;
    }
}

bool Med;

signed main()
{
//  file();
    fprintf(stderr,"%.3lf MB\n",abs(&Med-&Mbe)/1048576.0);
    int Tbe=clock();
    LgxTpre::lmy_forever();
    int Ted=clock();
    cerr<<1e3*(Ted-Tbe)/CLOCKS_PER_SEC<<" ms\n";
    return (0-0);
}