题解:UVA12047 Highest Paid Toll
Highest Paid Toll
翻译
给定一个有权重的有向图,包含
解法
双向 Dijkstra(或结合正向和反向 Dijkstra 的方法)是解决这类带限制的最短路径问题的经典做法,尤其在需要同时考虑路径总权值和路径上某些边权值的极值(如最大边权值)时非常有效。
分别以
如果该最短路径不超过
最终答案为所有候选边权值的最大值,若不存在则返回
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
typedef long long ll;
void solve() {
int n, m, s, t, p;
cin >> n >> m >> s >> t >> p;
vector<vector<pair<int, int> > > adj(n);
int u, v, w;
for (int i = 0; i < m; i ++) {
cin >> u >> v >> w;
u --, v --;
adj[u].push_back(make_pair(v, w));
}
s --, t --;
vector<vector<pair<int, int> > > adj1(n);
for (int i = 0; i < n; i ++) {
for (size_t j = 0; j < adj[i].size(); ++j) {
int v = adj[i][j].first;
int w = adj[i][j].second;
adj1[v].push_back(make_pair(i, w));
}
}
vector<int> dist_s(n, -1), dist_t(n, -1);
priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq;
pq.push(make_pair(0, s));
while (!pq.empty()) {
pair<int, int> top = pq.top();
pq.pop();
int d = top.first;
int u = top.second;
if (dist_s[u] != -1) continue;
dist_s[u] = d;
for (size_t j = 0; j < adj[u].size(); ++j) {
int v = adj[u][j].first;
int w = adj[u][j].second;
if (dist_s[v] != -1) continue;
pq.push(make_pair(d + w, v));
}
}
pq.push(make_pair(0, t));
while (!pq.empty()) {
pair<int, int> top = pq.top();
pq.pop();
int d = top.first;
int u = top.second;
if (dist_t[u] != -1) continue;
dist_t[u] = d;
for (size_t j = 0; j < adj1[u].size(); ++j) {
int v = adj1[u][j].first;
int w = adj1[u][j].second;
if (dist_t[v] != -1) continue;
pq.push(make_pair(d + w, v));
}
}
int ans = -1;
for (int u = 0; u < n; u ++) {
for (size_t j = 0; j < adj[u].size(); ++j) {
int v = adj[u][j].first;
int w = adj[u][j].second;
if (dist_s[u] != -1 && dist_t[v] != -1 && dist_s[u] + dist_t[v] + w <= p) {
ans = max(ans, w);
}
}
}
cout << ans << '\n';
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while (t --) {
solve();
}
return 0;
}