题解:P12037 [USTCPC 2025] 数学分析
LostKeyToReach
·
·
题解
很简单的微积分练手题。
我们令 f(k) 为 \displaystyle \int_{0}^1 \frac{x^k}{1 + x^2} \mathrm dx,那么原式改写为:
\sum_{i = 0} ^ n a_if(i).
接下来推导 f(k):
\begin{aligned}
f(k) &= \int_{0}^1 \frac{x^k}{1 + x^2} \mathrm dx \\
&= \int_{0}^1 x^{k - 2}\cdot \frac{x^2}{1 + x^2} \mathrm dx \\
&= \int_{0}^1 x^{k - 2}\left(1 - \frac{1}{1 + x^2}\right) \mathrm dx \\
&= \int_{0}^1 x^{k-2} \mathrm dx - \int_{0}^1 \dfrac{x^{k-2}}{1 + x^2} \mathrm dx \\
&= \dfrac{1}{k - 1} - f(k - 2).
\end{aligned}
接下来求解 f(1):
\begin{aligned}
\int \dfrac{1}{x^2+1} \mathrm dx
&= \arctan(x) + C.
\end{aligned}
代入原式得 f(1) = \arctan(1)。
继续求解 f(2):
\begin{aligned}
\int \dfrac{x}{1 + x^2} \mathrm dx &= \int \dfrac{1}{2u}\mathrm du (u = x^2+1) \\
&= \dfrac{\ln (u)}{2} + C \\
&= \dfrac{\ln (x^2 + 1)}{2} + C.
\end{aligned}
代入原式得 f(2) = \dfrac{\ln(2)}{2}.
接下来我们只需递推就做完了,时间复杂度 O(n)。