题解 P4948 【数列求和】
mrsrz
·
·
题解
稍微扰动一下就好了。
\sum_{i=1}^n i^k a^i=\sum_{i=1}^{n-1}i^k a^i +n^k a^n=\sum_{i=1}^{n-1}(i+1)^k a^{i+1}+a
\therefore \sum_{i=1}^{n-1}[(i+1)^ka^{i+1}-i^k a^i]=n^ka^n-a
对(i+1)^k二项式展开
\sum_{i=1}^{n-1}[a^{i+1}\sum_{j=0}^k\binom{k}{j}i^j -i^k a^i]=n^ka^n-a
\sum_{i=1}^{n-1}[a^{i+1}\sum_{j=0}^{k-1}\binom{k}{j}i^j + i^ka^{i+1} -i^k a^i]=n^ka^n-a
\sum_{i=1}^{n-1}a^{i+1}\sum_{j=0}^{k-1}\binom{k}{j}i^j + (a-1)\sum_{i=1}^{n-1}i^k a^i=n^ka^n-a
\sum_{j=0}^{k-1}\binom{k}{j}\sum_{i=1}^{n-1}a^{i+1}i^j + (a-1)\sum_{i=1}^{n-1}i^k a^i=n^ka^n-a
a\sum_{j=0}^{k-1}\binom{k}{j}\sum_{i=1}^{n-1}i^j a^i + (a-1)\sum_{i=1}^{n-1}i^k a^i=n^ka^n-a
设F(k)=\sum_{i=0}^{n-1} i^k a^i
a\sum_{j=0}^{k-1}\binom{k}{j}F(j) + (a-1)F(k)=n^ka^n-a
(a-1)F(k)=-a\sum_{j=0}^{k-1}\binom{k}{j}F(j) +n^ka^n-a
F(k)=\dfrac{-a\sum_{j=0}^{k-1}\binom{k}{j}F(j) +n^ka^n-a}{a-1}
我们可以很容易算出F(0)的值,然后预处理组合数,就可以在O(k^2)时间内递推出F(k)。
最后的答案为F(k)+n^k a^n。
那a=1呢?
此时有
\sum_{j=0}^{k-1}\binom{k}{j}F(j)=n^k-1
F(k-1)\times\binom{k}{k-1}+ \sum_{j=0}^{k-2}\binom{k}{j}F(j)=n^k-1
F(k-1)\times \binom{k}{k-1}=n^k-1-\sum_{j=0}^{k-2}\binom{k}{j}F(j)
F(k-1)=\dfrac{n^k-1-\sum_{j=0}^{k-2}\binom{k}{j}F(j)}{\binom{k}{k-1}}
即
F(k)=\dfrac{n^{k+1}-\sum_{j=0}^{k-1}\binom{k+1}{j}F(j)}{\binom{k+1}{k}}