P11831 [省选联考 2025] 追忆
Genius_Star · · 题解
思路:
注意到空间和时间挺大的,考虑直接 bitset
对于询问,我们想要知道 bitset。
考虑建一个 bitset,注意这里我们不用 pushup,即单点修改时,直接从叶子到根修改一遍,复杂度为 bitset 的合并,以及
现在我们已经支持 bitset。
我们将 bitset 与
同样使用这种 bitset,然后在这个线段树上进行二分,若与
也至多进行 bitset 的合并,最后暴力扫散点判断,二分复杂度为
总时间复杂度为
先放一个赛后写的可能会被卡常的代码。
完整代码:
#include<bits/stdc++.h>
#define lowbit(x) x & (-x)
#define ls(k) k << 1
#define rs(k) k << 1 | 1
#define fi first
#define se second
#define open(s1, s2) freopen(s1, "r", stdin), freopen(s2, "w", stdout);
using namespace std;
typedef __int128 __;
typedef long double lb;
typedef double db;
typedef unsigned long long ull;
typedef long long ll;
bool Begin;
const int N = 1e5 + 1, B = 4, M = 17;
inline ll read(){
ll x = 0, f = 1;
char c = getchar();
while(c < '0' || c > '9'){
if(c == '-')
f = -1;
c = getchar();
}
while(c >= '0' && c <= '9'){
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return x * f;
}
inline void write(ll x){
if(x < 0){
putchar('-');
x = -x;
}
if(x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
struct Node{
int l, r;
int dep;
int lson, rson;
bitset<N> s[2];
}X[M];
bitset<N> Ans;
int c, rt, T, n, m, q, u, v, op, x, y, l, r, cnt, ans;
int a[N], b[N], pa[N], pb[N];
bitset<N> f[N];
vector<int> E[N];
inline void add(int u, int v){
E[u].push_back(v);
}
inline void build(int &k, int l, int r, int dep){
if(dep >= B)
return ;
k = ++cnt;
X[k].l = l, X[k].r = r;
X[k].dep = dep;
X[k].s[0].reset(), X[k].s[1].reset();
if(l == r)
return ;
int mid = (l + r) >> 1;
build(X[k].lson, l, mid, dep + 1);
build(X[k].rson, mid + 1, r, dep + 1);
}
inline void update(int k, int i, int v, bool f, int pre = 0){
if(X[k].dep >= B)
return ;
if((f ? b[v] : a[v]) < X[k].l || (f ? b[v] : a[v]) > X[k].r)
X[k].s[f][pre] = 0;
X[k].s[f][v] = 1;
if(X[k].l == X[k].r)
return ;
int mid = (X[k].l + X[k].r) >> 1;
if(i <= mid)
update(X[k].lson, i, v, f, pre);
else
update(X[k].rson, i, v, f, pre);
}
inline void ask(int k, int l, int r){
if(X[k].l == l && r == X[k].r){
Ans |= X[k].s[0];
return ;
}
if(X[k].dep == B - 1){
for(int i = l; i <= r; ++i)
Ans[pa[i]] = 1;
return ;
}
int mid = (X[k].l + X[k].r) >> 1;
if(r <= mid)
ask(X[k].lson, l, r);
else if(l > mid)
ask(X[k].rson, l, r);
else{
ask(X[k].lson, l, mid);
ask(X[k].rson, mid + 1, r);
}
}
inline int ask(int k){
if(X[k].dep == B - 1){
for(int i = X[k].r; i >= X[k].l; --i)
if(Ans[pb[i]])
return i;
return 0;
}
if(X[k].l == X[k].r)
return X[k].l;
if((Ans & X[X[k].rson].s[1]).count())
return ask(X[k].rson);
else
return ask(X[k].lson);
}
inline void solve(){
cnt = 0;
n = read(), m = read(), q = read();
for(int i = 1; i <= n; ++i){
E[i].clear();
f[i].reset();
f[i][i] = 1;
}
while(m--){
u = read(), v = read();
add(v, u);
}
for(int u = n; u >= 1; --u)
for(auto v : E[u])
f[v] |= f[u];
for(int i = 1; i <= n; ++i)
a[i] = read();
for(int i = 1; i <= n; ++i)
b[i] = read();
build(rt, 1, n, 0);
for(int i = 1; i <= n; ++i){
update(rt, a[i], i, 0);
update(rt, b[i], i, 1);
pa[a[i]] = i, pb[b[i]] = i;
}
while(q--){
op = read();
if(op == 1){
x = read(), y = read();
if(x == y)
continue;
update(rt, a[x], y, 0, x);
update(rt, a[y], x, 0, y);
swap(a[x], a[y]);
swap(pa[a[x]], pa[a[y]]);
}
else if(op == 2){
x = read(), y = read();
if(x == y)
continue;
update(rt, b[x], y, 1, x);
update(rt, b[y], x, 1, y);
swap(b[x], b[y]);
swap(pb[b[x]], pb[b[y]]);
}
else{
Ans.reset();
ans = 0;
u = read(), l = read(), r = read();
ask(rt, l, r);
Ans &= f[u];
if(Ans.count()){
write(ask(rt));
putchar('\n');
}
else
puts("0");
}
}
}
bool End;
int main(){
//open("A.in", "A.out");
c = read(), T = read();
while(T--)
solve();
cerr << '\n' << abs(&Begin - &End) / 1048576 << "MB";
return 0;
}