背包问题模板
前言
Luogu & cnblogs
Upd on 2025.3.23:原来图片链接炸了,换了新链接。
Upd on 2025.5.6:发现了一处笔误。
Upd on 2025.6.8:添加了有依赖背包(树形背包)的
01 背包
题目描述
有
状态表示
集合
令
属性
集合中的 最大价值。
状态转移
故
DP 时间复杂度为
初始条件
当选择
最终结果
最终应当是 从前
代码实现
#include <bits/stdc++.h>
const int N = 1e3 + 10;
int n, V, f[N];
int main() {
std::cin >> n >> V;
for (int i = 1, v, w; i <= n; ++i) {
std::cin >> v >> w;
for (int j = V; j >= v; --j) // 使用上一层的,倒序遍历
f[j] = std::max(f[j], f[j - v] + w);
}
std::cout << f[V] << std::endl;
return 0;
}
完全背包
题目描述
有
状态表示
集合
令
属性
集合中的 最大价值。
状态转移
这样 DP 的时间复杂度是
可以发现
故
此时时间复杂度降为
初始条件
当选择
最终结果
最终应当是 从前
代码实现
#include <bits/stdc++.h>
const int N = 1e3 + 10;
int n, V, f[N];
int main() {
std::cin >> n >> V;
for (int i = 1, v, w; i <= n; ++i) {
std::cin >> v >> w;
for (int j = v; j <= V; ++j) // 使用同一层的,正序遍历
f[j] = std::max(f[j], f[j - v] + w);
}
std::cout << f[V] << std::endl;
return 0;
}
多重背包
题目描述
朴素算法
状态表示
有
集合
令
属性
集合中的 最大价值。
状态转移
故
初始条件
当选择
最终结果
最终应当是 从前
代码实现
#include <bits/stdc++.h>
const int N = 110;
int n, V, f[N];
int main() {
std::cin >> n >> V;
for (int i = 1, v, w, s; i <= n; ++i) {
std::cin >> v >> w >> s;
for (int j = V; ~j; --j) // 一定要把 j 放在外面!使用上一层的,倒序遍历
for (int k = 0; k <= s && k * v <= j; ++k)
f[j] = std::max(f[j], f[j - k * v] + k * w);
}
std::cout << f[V] << std::endl;
return 0;
}
二进制优化
引理:
**证明:** 显然地,$2^0,2^1,\cdots,2^k$ 可以凑出 $[1,2^{k+1}-1]$ 之间的所有正整数。 将其中每个数 $+s$,则可以凑出 $[s,n]$ 之间的所有正整数。 因为 $s\le2^{k+1}-1$,所以 $[1,2^{k+1}-1],[s,n]$ 必然能覆盖 $[1,n]$ 中的所有正整数。 证毕。
对于每种物品的个数
代码实现
#include <bits/stdc++.h>
const int N = 2e3 + 10;
int n, V, f[N];
int main() {
std::cin >> n >> V;
for (int i = 1, v, w, s; i <= n; ++i) {
std::cin >> v >> w >> s;
for (int k = 1; k <= s; k <<= 1) {
for (int j = V; j >= k * v; --j) // 使用上一层的,倒序遍历
f[j] = std::max(f[j], f[j - k * v] + k * w);
s -= k;
}
if (s)
for (int j = V; j >= s * v; --j)
f[j] = std::max(f[j], f[j - s * v] + s * w);
}
std::cout << f[V] << std::endl;
return 0;
}
单调队列优化
在朴素算法中,状态转移方程如下:
容易发现,
不同同余系之间不相干,所以我们可以在一个同余系内考虑。
可以发现,求
令非负整数
上面的最后一个式子只是理想情况,可能取不到
f_q 。
可以发现在第
怎么办呢?
其实可以把
此时队列中原有的元素就不会发生变化了。
虽然在单调队列中插入的只是下标(如
假设
通过观察可以发现,
有了
然后我们要解决如何判断队头是否过时的问题。
假设当前队头
容易发现,当
又因为
最后,我们应该知道如何用单调队列队头
朴素式子中第
因为
故可得:
此时就可以
该算法时间复杂度为
代码实现
PS:具体实现时,如果只开一个一维数组,那么就应当倒序循环。但是如果倒序循环,单调队列就无法优化。所以应该采用滚动数组技巧。此处使用
f 存储这一层,g 存储上一层。
#include <bits/stdc++.h>
const int N = 2e4 + 10;
int n, V, f[N], g[N], q[N]; // f,g 为 DP 数组,q 为单调队列(最大容量为 V)
int main() {
std::cin >> n >> V;
for (int i = 1, v, w, s; i <= n; ++i) {
std::cin >> v >> w >> s;
memcpy(g, f, sizeof(f)); // g <- f
for (int j = 0; j < v; ++j) { // 枚举同余类
int hh = 0, tt = -1; // 单调队列的头和尾
for (int k = j; k <= V; k += v) { // 在同一个同余类内枚举体积
while (hh <= tt && k - q[hh] > s * v) ++hh; // 弹出队头
if (hh <= tt) f[k] = std::max(g[k], g[q[hh]] + (k - q[hh]) / v * w); // 状态转移
while (hh <= tt && g[q[tt]] - (q[tt] - j) / v * w <= g[k] - (k - j) / v * w) --tt; // 弹出队尾
q[++tt] = k; // 插入当前元素
}
}
}
std::cout << f[V] << std::endl;
return 0;
}
混合背包
题目描述
有
物品一共有三类:
- 第一类物品只能用
1 次; - 第二类物品可以用无限次;
- 第三类物品最多只能用
s_i 次。
第
最大化放入背包物品的总价值,并输出最大总价值。
解决方法
01 背包、完全背包、多重背包的混合版。
可以分类讨论:
- 对于完全背包,可以单独计算
- 对于 01 背包,当成
s_i=1 的多重背包,和多重背包一起计算。
代码实现
#include <bits/stdc++.h>
const int N = 1e3 + 10;
int n, V, f[N];
int main() {
std::cin >> n >> V;
for (int i = 1, v, w, s; i <= n; ++i) {
std::cin >> v >> w >> s; // 本题中 s=-1 为第一类,s=0 为第二类,s 是正整数为第三类
if (!s) { // 完全背包
for (int j = v; j <= V; ++j)
f[j] = std::max(f[j], f[j - v] + w);
} else {
if (s == -1) s = 1; // 01 背包->多重背包
for (int k = 1; k <= s; k <<= 1) {
for (int j = V; j >= k * v; --j)
f[j] = std::max(f[j], f[j - k * v] + k * w);
s -= k;
}
if (s)
for (int j = V; j >= s * v; --j)
f[j] = std::max(f[j], f[j - s * v] + s * w);
}
}
std::cout << f[V] << std::endl;
return 0;
}
分组背包
题目描述
有
第
第
最大化放入背包物品的总价值,并输出最大总价值。
状态表示
集合
令
属性
集合中的 最大价值。
状态转移
故
初始条件
当从前
最终结果
最终应当是 从前
代码实现
#include <bits/stdc++.h>
const int N = 110; // 假设 V,s[i] 同阶
int n, V, v[N], w[N], f[N];
int main() {
std::cin >> n >> V;
for (int i = 1, s; i <= n; ++i) {
std::cin >> s;
for (int j = 1; j <= s; ++j) std::cin >> v[j] >> w[j];
for (int j = V; ~j; --j)
for (int k = 1; k <= s; ++k)
if (j >= v[k]) f[j] = std::max(f[j], f[j - v[k]] + w[k]);
}
std::cout << f[V] << std::endl;
return 0;
}
二维费用背包
题目描述
有
第
状态表示
集合
令
属性
集合中的 最大价值。
状态转移
与 01 背包类似,分选择和不选两种情况。
故
初始条件
当选择
最终结果
最终应当是 从前
代码实现
#include <iostream>
const int N = 1e2 + 10;
int n, V, M, f[N][N];
int main() {
std::cin >> n >> V >> M;
for (int i = 1, v, m, w; i <= n; ++i) {
std::cin >> v >> m >> w;
for (int j = V; j >= v; --j)
for (int k = M; k >= m; --k)
f[j][k] = std::max(f[j][k], f[j - v][k - m] + w);
}
std::cout << f[V][M] << std::endl;
return 0;
}
有依赖的背包问题
题目描述
有
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。
第
求解将哪些物品装入背包,可使物品总体积不超过背包体积,且总价值最大。
输出最大价值。
方法一:O(nV^2)
状态表示
集合
令
属性
集合中的 最大价值。
状态转移
对于每个儿子,可以用体积划分集合。
由于每个儿子只能有一种体积,所以相当于一个分组背包。
时间复杂度为
初始条件
最终结果
最终结果应为在根结点的子树中,总体积不超过
对于树上问题,考虑转成欧拉序进行处理。
下记得到的欧拉序为
令
初始化
当
故
状态转移
根据状态定义,遍历
对于当前的位置
分讨。
遇到出口
此时
那么
遇到入口
此时
再分讨一下:
-
不选择物品
u :如果我们不选择
u ,那么整个子树(即欧拉序中[\operatorname{in}(u),\operatorname{out}(u)] )都不能选择,那么f_{i,j}=f_{\operatorname{out}(u)+1,j} -
选择物品
u :注意,该情况的存在条件为
j\ge v_u (此处记体积为\{v\} ,价值为\{w\} )。我们将
u 放入后,剩余体积为j-v_u ,获得价值为w_u 。剩下来的容量,可以在后续的结点中分配,由于后续结点为
[i+1,2n] (相当于[\operatorname{in}(u)+1,2n] ),故f_{i,j}=f_{i+1,j-v_u}+w_u
两种情况取一个
时间复杂度。
- 构造欧拉序
O(n) 。 - 遍历复杂度
O(n) ,内部对于遇到入口时为O(V) ,故 DP 的时间复杂度为O(nV) 。
综上,时间复杂度为
代码实现
注意要开两倍数组!
#include <bits/stdc++.h>
const int N = 2e2 + 10;
std::vector<int> g[N];
int n, V, root, v[N], w[N];
int f[N][N];
int cnt, euler[N], in[N], out[N];
void input() {
std::cin >> n >> V;
for (int i = 1, p; i <= n; ++i) {
std::cin >> v[i] >> w[i] >> p;
if (p == -1) root = i;
else g[p].push_back(i);
}
}
void dfs(int u) {
euler[++cnt] = u, in[u] = cnt;
for (auto v : g[u]) dfs(v);
euler[++cnt] = u, out[u] = cnt;
}
void dp() {
for (int i = cnt; i; --i) {
int u = euler[i];
if (i == out[u]) for (int j = 0; j <= V; ++j) f[i][j] = f[i + 1][j]; // 遇到出口
else { // 遇到入口
for (int j = 0; j <= V; ++j) {
f[i][j] = f[out[u] + 1][j]; // 不选 u
if (j >= v[u]) f[i][j] = std::max(f[i][j], f[i + 1][j - v[u]] + w[u]); // 选 u
}
}
}
}
int main() {
input();
dfs(root); // 构建欧拉序
dp();
std::cout << f[1][V] << std::endl; // 由定义容易得到
return 0;
}
背包问题求方案数
题目描述
有
第
求解将哪些物品装入背包,可使这些物品的总体积不超过背包体积,且总价值最大。
输出 最优选法的方案数。注意答案可能很大,请输出答案模
状态表示
集合
令
属性
集合中的 最大价值。
状态转移
令
可以知道,
可以分三类讨论:
初始条件
由于
最终结果
令
代码实现
#include <bits/stdc++.h>
const int N = 1e3 + 10;
const int MOD = 1e9 + 7;
int n, V, ans, cnt, f[N], g[N];
int main() {
std::cin >> n >> V;
memset(f, -0x3f, sizeof(f));
f[0] = 0, g[0] = 1;
for (int i = 1, v, w; i <= n; ++i) {
std::cin >> v >> w;
for (int j = V; j >= v; --j) {
int mx = std::max(f[j], f[j - v] + w), s = 0;
if (mx == f[j]) s = g[j];
if (mx == f[j - v] + w) (s += g[j - v]) %= MOD;
f[j] = mx, g[j] = s;
}
}
ans = *std::max_element(f, f + V + 1);
for (int i = 0; i <= V; ++i)
if (f[i] == ans) cnt += g[i];
std::cout << cnt << std::endl;
return 0;
}
背包问题求具体方案
题目描述
有
第
求解将哪些物品装入背包,可使这些物品的总体积不超过背包体积,且总价值最大。
输出 字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。
状态表示
集合
令
属性
集合中的最大价值。
状态转移
容易知道,
初始条件
获得方案
题目要求输出 字典序最小的方案。从前往后考虑,每个物品必然是 能选就选。
如何知道第
可以看
Q:为什么要这样定义
f_{i,j} ?A:倒着定义,
f_{1,V} 就是全局最优解。根据转移的情况来向后推,f_{2,\Delta V},f_{2,\Delta V'},\cdots 都是全局最优解,保证输出结果是全局最优方案。但是如果正着定义,f_{1,V} 是局部最优解,在后面的转移中可能没有入选,会导致输出结果不是全局最优方案。提供一组数据:
输入
4 5 1 2 2 4 3 4 4 6输出 1(倒着定义)
1 4输出 2(正着定义)
1 2可以发现输出 2 只是纯粹的能选就选,没有考虑全局情况。
(这里可能解释不清楚,轻喷/kk)
详见代码。
代码实现
#include <bits/stdc++.h>
const int N = 1e3 + 10; // 假设 n,V 同阶
int n, V, v[N], w[N], f[N][N]; // 此时不能压成一维了
int main() {
std::cin >> n >> V;
for (int i = 1; i <= n; ++i) std::cin >> v[i] >> w[i];
for (int i = n; i; --i)
for (int j = 0; j <= V; ++j) {
f[i][j] = f[i + 1][j];
if (j >= v[i]) f[i][j] = std::max(f[i][j], f[i + 1][j - v[i]] + w[i]);
}
int j = V; // 剩余空间的体积
for (int i = 1; i <= n; ++i) {
if (j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i]) { // 从选第 i 个的情况转移过来
std::cout << i << " ";
j -= v[i];
}
}
std::cout << std::endl;
return 0;
}