题解:P10802 [CEOI2024] 核酸检测
Petit_Souris · · 题解
我们考虑用 dp 算出期望最优的策略:设
当
当
当
交互过程只需要根据 dp 得到的路径来构造就行了。时间复杂度为
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
/// You may use:
// The number of students
int N;
// The probability any given student is positive
double P;
// This function performs a test on a subset of samples.
// Its argument is a vector of Booleans of length N,
// where the i-th element is true if the i-th sample should be added to the mix.
// It returns true if (and only if) at least one of the samples in the mix is positive.
bool test_students(std::vector<bool> mask) {
assert(mask.size() == (size_t)N);
std::string mask_str(N, ' ');
for (int i = 0; i < N; i++)
mask_str[i] = mask[i] ? '1' : '0';
printf("Q %s\n", mask_str.c_str());
fflush(stdout);
char answer;
scanf(" %c", &answer);
return answer == 'P';
}
/// You should implement:
// This function will be called once for each test instance.
// It should use test_students to determine which samples are positive.
// It must return a vector of Booleans of length N,
// where the i-th element is true if and only if the i-th sample is positive.
typedef double ld;
const ld INF=1e9;
ld dp[1009][1009],pb[1009];
int trans[1009][1009];
mt19937 rnd(time(0));
std::vector<bool> find_positive(bool typ) {
std::vector<bool> answer(N);
if(typ){
rep(i,0,N-1){
vector<bool>msk(N);
msk[i]=1;
if(test_students(msk))answer[i]=1;
}
return answer;
}
vector<int>ord(N);
iota(ord.begin(),ord.end(),0);
shuffle(ord.begin(),ord.end(),rnd);
int i=N,j=0;
while(i){
if(j==1){
answer[ord[i-1]]=1;
i--,j=0;
// if(i)shuffle(ord.begin(),ord.begin()+i-1,rnd);
continue;
}
vector<bool>msk(N);
int k=trans[i][j];
per(p,i-1,i-k)msk[ord[p]]=1;
bool res=test_students(msk);
if(j){
if(!res)i-=k,j-=k;
else j=k;
}
else {
if(!res)i-=k;
else j=k;
}
}
return answer;
}
int main() {
int T;
scanf("%d %lf %d", &N, &P, &T);
if(T>1){
pb[0]=1;
rep(i,1,N)pb[i]=pb[i-1]*(1-P);
rep(i,0,N+1){
rep(j,0,N+1)dp[i][j]=INF;
}
rep(i,0,N+1)dp[0][i]=0;
rep(i,1,N){
dp[i][1]=dp[i-1][0];
rep(j,2,i){
rep(k,1,j){
ld prob=(pb[k]-pb[j])/(1-pb[j]);
ld val=dp[i-k][j-k]*prob+dp[i][k]*(1-prob)+1;
if(val<dp[i][j])dp[i][j]=val,trans[i][j]=k;
}
}
rep(j,1,i){
ld val=dp[i-j][0]*pb[j]+dp[i][j]*(1-pb[j])+1;
if(val<dp[i][0])dp[i][0]=val,trans[i][0]=j;
}
}
}
// You may perform any extra initialization here.
for (int i = 0; i < T; i++) {
std::vector<bool> answer = find_positive(T==1);
assert(answer.size() == (size_t)N);
std::string answer_str(N, ' ');
for (int j = 0; j < N; j++)
answer_str[j] = answer[j] ? '1' : '0';
printf("A %s\n", answer_str.c_str());
fflush(stdout);
char verdict;
scanf(" %c", &verdict);
if (verdict == 'W')
exit(0);
}
return 0;
}