[ABC355G] Baseball 题解

· · 题解

简化题意:选择 k 个数 x_1, \ldots ,x_k,使总价值最小,总价值为:

\sum_{i}^n (\min_{1\leq j\leq k}|x_k - i|) \times p_i

可以转化为(此处设 x_0=-\infty,x_{n+1}=\infty):

\sum_{i=0}^{n}\sum_{x_i\leq j\leq x_{i+1}} \min(j-x_i, x_{i+1} - j)p_j

w(l,r)=\sum_{l\le i\le r} \min(i-l,r-i)p_i,可以看出 w 满足四边形不等式,这明显是一个限制数量划分的问题,那么就可以用四边形不等式优化到 O(nk)

f(k) 为划分为 k 个区间的最小费用,可以知道 f 是凸性的,详细证明可以看这篇文章。那么就可以用 wqs 二分了,在求值时用二分队列。复杂度 O(n\log V\log n)

代码:

#include<cstdio>
#include<algorithm>
#define ll long long
#define N 50010
#define pa pair<ll,int>
using namespace std;
int n, k;
ll p[N], sl[N], ssl[N], sr[N], ssr[N], c;
pa f[N], ans;
int id[N], bg, en, ql[N], qr[N];
ll wl(int l, int r)
{
    if(l > r)return 0;
    return ssr[l] - ssr[r + 1] - sr[r + 1] * (r - l + 1);
}
ll wr(int l, int r)
{
    if(l > r)return 0;
    return ssl[r] - ssl[l - 1] - sl[l - 1] * (r - l + 1);
}
ll w(int l, int r)
{
    if(l + 1 == r)return 0;
    int mid = (l + r) / 2;
    return wl(l + 1, mid) + wr(mid + 1, r - 1);
}
pa get(int l, int r)
{
    return make_pair(f[l].first + w(l, r) + c, f[l].second + 1);
}
void check()
{
    bg = 1;
    en = 0;
    ans = make_pair(1e18, 0);
    for(int i = 1; i <= n; i++)
    {
        f[i] = make_pair(wr(1, i - 1) + c, 1);
        while(bg <= en && qr[bg] < i)bg++;
        if(bg <= en)
        {
            ql[bg] = i + 1;
            f[i] = min(f[i], get(id[bg], i));
        }
        ans = min(ans, make_pair(f[i].first + wl(i + 1, n), f[i].second));
        while(bg <= en && get(i, ql[en]) < get(id[en], ql[en]))en--;
        if(bg > en)
        {
            bg = en = 1;
            id[bg] = i;
            ql[bg] = i + 1;
            qr[bg] = n;
        }
        else if(get(i, qr[en]) > get(id[en], qr[en]))
        {
            if(qr[en] < n)
            {
                en++;
                ql[en] = qr[en - 1] + 1;
                qr[en] = n;
                id[en] = i;
            }
        }
        else
        {
            int ml = ql[en], mr = qr[en];
            while(ml < mr)
            {
                int mid = (ml + mr) / 2;
                if(get(i, mid) < get(id[en], mid))mr = mid;
                else ml = mid + 1;
            }
            qr[en] = ml - 1;
            en++;
            ql[en] = ml;
            qr[en] = n;
            id[en] = i;
        }
    }
}
int main()
{
    scanf("%d%d", &n, &k);
    for(int i = 1; i <= n; i++)scanf("%lld", p + i);
    for(int i = 1; i <= n; i++)sl[i] = sl[i - 1] + p[i], ssl[i] = ssl[i - 1] + sl[i];
    for(int i = n; i; i--)sr[i] = sr[i + 1] + p[i], ssr[i] = ssr[i + 1] + sr[i];
    ll ml = 0, mr = 1e10;
    while(ml < mr)
    {
        c = (ml + mr) / 2;
        check();
        if(ans.second <= k)mr = c;
        else ml = c + 1;
    }
    c = ml;
    check();
    printf("%lld\n", ans.first - k * c);
    return 0;
}