题解:P14476 矩阵绘画
nullqtr_pwp · · 题解
如果对合法染色方式计数,那么是容易的。考虑不相交的限制,提取出激活的 0 和 1 信息,可以
问题在于重复计数。考虑一个重复算的区域,要么是前缀全选行,要么是前缀全选列(一个
进而,只关心左上角
时间复杂度
#include<bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define uint unsigned
#define pb push_back
#define mkp make_pair
#define fi first
#define se second
#define inf 1000000000
#define infll 1000000000000000000ll
#define pii pair<int,int>
#define rep(i,a,b,c) for(int i=(a);i<=(b);i+=(c))
#define per(i,a,b,c) for(int i=(a);i>=(b);i-=(c))
#define F(i,a,b) for(int i=a,i##end=b;i<=i##end;i++)
#define dF(i,a,b) for(int i=a,i##end=b;i>=i##end;i--)
#define eb emplace_back
#define SZ(x) ((int)x.size())
#define all(x) x.begin(),x.end()
using namespace std;
bool ST;
void fre(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
}
inline int lowbit(int x){ return x&(-x); }
template<typename T>inline void chkmax(T &x,const T &y){ x=std::max(x,y); }
template<typename T>inline void chkmin(T &x,const T &y){ x=std::min(x,y); }
const int mod=1e9+7,maxn=5005;
inline int qpow(int x,ll y){ int res=1; for(;y;y>>=1,x=1ll*x*x%mod)if(y&1)res=1ll*res*x%mod; return res; }
inline void inc(int &x,const int y){ x=(x+y>=mod)?(x+y-mod):(x+y); }
inline void dec(int &x,const int y){ x=(x>=y)?(x-y):(x+mod-y); }
inline int add(const int x,const int y){ return (x+y>=mod)?(x+y-mod):(x+y); }
inline int sub(const int x,const int y){ return (x>=y)?(x-y):(x+mod-y); }
string str[maxn];
int n,a[maxn],b[maxn],p0[maxn][maxn],p1[maxn][maxn],h[maxn][maxn],dp[maxn],g[maxn],f[maxn];
inline int q0(int xl,int xr,int yl,int yr){ return (xl>xr||yl>yr)?0:p0[xr][yr]-p0[xl-1][yr]-p0[xr][yl-1]+p0[xl-1][yl-1]; }
inline int q1(int xl,int xr,int yl,int yr){ return (xl>xr||yl>yr)?0:p1[xr][yr]-p1[xl-1][yr]-p1[xr][yl-1]+p1[xl-1][yl-1]; }
int sol1(){
f[0]=1,a[n+1]=n;
F(i,1,n)if(a[i]){
h[i][i]=1;
F(j,i+1,n+1){
h[i][j]=0;
if(a[j]>=a[i]){
if(!q1(j,j,1,a[i]))h[i][j]=h[i][j-1];
continue;
}
if(q1(j,j,a[j]+1,a[i])>0)continue;
if(q0(j,j,1,a[j])==0)inc(h[i][j],h[i][j-1]);
if(a[j]&&q1(j,j,1,a[j])==0)inc(h[i][j],h[i][j-1]);
}
}
F(i,1,n+1)if(a[i]){
g[a[i]+1]=1;
dF(j,a[i],1){
g[j]=0;
if(b[j]>=i){
if(!q1(1,i-1,j,j))g[j]=g[j+1];
continue;
}
if(q1(b[j]+1,i-1,j,j)>0)continue;
if(q0(1,b[j],j,j)==0)inc(g[j],g[j+1]);
if(b[j]&&q1(1,b[j],j,j)==0)inc(g[j],g[j+1]);
}
F(j,0,i-1)if(a[j]<=a[i])inc(f[i],1ll*(j==0?1:h[j][i-1])*g[a[j]+1]%mod*f[j]%mod);
}
return f[n+1];
}
mt19937_64 eng(time(0));
uint rd[maxn][maxn];
bool chk(){
if(!a[1]||!b[1])return 0;
uint x=0,y=0;
F(i,1,n)F(j,1,n)rd[i][j]=eng();
F(i,1,a[1])F(j,1,b[i])x+=rd[j][i];
F(i,1,b[1])F(j,1,a[i])y+=rd[i][j];
return x==y;
}
int sol2(){
memset(f,0,sizeof f),f[b[1]]=1;
a[b[1]]=a[1];
F(i,b[1],n)if(a[i]){
h[i][i]=1;
F(j,i+1,n+1){
h[i][j]=0;
if(a[j]>=a[i]){
if(!q1(j,j,1,a[i]))h[i][j]=h[i][j-1];
continue;
}
if(q1(j,j,a[j]+1,a[i])>0)continue;
if(q0(j,j,1,a[j])==0)inc(h[i][j],h[i][j-1]);
if(a[j]&&q1(j,j,1,a[j])==0)inc(h[i][j],h[i][j-1]);
}
}
F(i,b[1]+1,n+1)if(a[i]){
g[a[i]+1]=1;
dF(j,a[i],1){
g[j]=0;
if(b[j]>=i){
if(!q1(1,i-1,j,j))g[j]=g[j+1];
continue;
}
if(q1(b[j]+1,i-1,j,j)>0)continue;
if(q0(1,b[j],j,j)==0)inc(g[j],g[j+1]);
if(b[j]&&q1(1,b[j],j,j)==0)inc(g[j],g[j+1]);
}
F(j,0,i-1)if(a[j]<=a[i])inc(f[i],1ll*(j==0?1:h[j][i-1])*g[a[j]+1]%mod*f[j]%mod);
}
return f[n+1];
}
void solve(){
cin>>n;
F(i,1,n)cin>>a[i];
F(i,1,n)cin>>b[i];
F(i,1,n)cin>>str[i],str[i]=' '+str[i];
F(i,1,n)F(j,1,n)p0[i][j]=p0[i-1][j]+p0[i][j-1]-p0[i-1][j-1]+(str[i][j]=='0');
F(i,1,n)F(j,1,n)p1[i][j]=p1[i-1][j]+p1[i][j-1]-p1[i-1][j-1]+(str[i][j]=='1');
int ans=sol1();
if(chk())dec(ans,sol2());
cout<<ans<<'\n';
}
bool ED;
signed main(){
fre(),ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int wzq=1;
F(____,1,wzq)solve();
cerr<<"time used: "<<(double)clock()/CLOCKS_PER_SEC<<endl;
cerr<<"memory used: "<<abs(&ST-&ED)/1024.0/1024.0<<" MB"<<endl;
}
// g++ P14476.cpp -o a -std=c++14 -O2