题解 P3263 【[JLOI2015]有意义的字符串】

· · 题解

首先得出,\frac{b+\sqrt d}{2}\frac{b-\sqrt d}{2}是一元二次方程x^2-bx+\frac{b^2-d}{4}=0的两根。

x^2-bx+\frac{b^2-d}{4}=0移项得x^2=bx+\frac{d-b^2}{4}

两边同乘以x^{n-2},可以得出,x^n=bx^{n-1}+\frac{d-b^2}{4}x^{n-2}

f[i]=(\frac{b+\sqrt d}{2})^i+(\frac{b-\sqrt d}{2})^i

此时就容易得出f[i]是个整数,并且递推式为f[i]=bf[i-1]+\frac{d-b^2}{4}f[i-2]f[0]=2,f[1]=b。这时候就能通过矩阵乘法求得f[n](注意,相乘会爆long long,因此要用快速乘)。

最后考虑怎样通过f[n]求得结果。由于题目限定b^2\leq d<(b+1)^2,所以n是奇数时-1<(\frac{b-\sqrt d}{2})^n\leq0,否则n是偶数时0\leq(\frac{b-\sqrt d}{2})^n<1。所以如果满足b^2\neq d并且n为偶数,则答案为f[n]-1,否则答案为f[n]

注意特判n=0时结果为1

代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll b, d, n, tm; const ll ZZQ = 7528443412579576937ll;
ll add(ll a, ll b) {
    return (1ull * a + 1ull * b) % ZZQ;
}
ll prod(ll a, ll b) {
    ll res = 0;
    while (b) {
        if (b & 1) res = add(res, a);
        a = add(a, a);
        b >>= 1;
    }
    return res;
}
struct cyx {
    int n, m; ll v[4][4];
    cyx() {}
    cyx(int _n, int _m) :
        n(_n), m(_m) {memset(v, 0, sizeof(v));}
    friend inline cyx operator * (cyx a, cyx b) {
        int i, j, k; cyx res = cyx(a.n, b.m);
        for (i = 1; i <= res.n; i++) for (j = 1; j <= res.m; j++)
        for (k = 1; k <= a.m; k++)
            res.v[i][j] = add(res.v[i][j], prod(a.v[i][k], b.v[k][j]));
        return res;
    }
    friend inline cyx operator ^ (cyx a, ll b) {
        int i; cyx res = cyx(a.n, a.m);
        for (i = 1; i <= res.n; i++) res.v[i][i] = 1;
        while (b) {
            if (b & 1) res = res * a;
            a = a * a;
            b >>= 1;
        }
        return res;
    }
} P, Q;
int main() {
    cin >> b >> d >> n; P = cyx(2, 2); Q = cyx(2, 1);
    if (!n) return printf("1\n"), 0;
    tm = (d >> 2) - prod(b + 1 >> 1, b - 1 >> 1);
    P.v[1][1] = b; P.v[1][2] = tm; P.v[2][1] = 1;
    Q.v[1][1] = b; Q.v[2][1] = 2; P = (P ^ n - 1) * Q;
    ll ans = P.v[1][1]; if (d != b * b && !(n & 1)) ans--;
    if (ans < 0) ans += ZZQ; cout << ans << endl;
    return 0;
}