【题解】多项式三角函数
NaCly_Fish · · 题解
大名鼎鼎的欧拉公式
把这个式子稍微变形一下
将这两个式子相加或相减一下,得到
然后我们移个项,并用
可是这里还有个虚数单位
别慌,我们冷静分析一下
虚数单位
剩下的,就是套上一个多项式指数函数的板子了。
Code:
#pragma GCC optimize ("unroll-loops")
#pragma GCC optimize (2)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 262147
#define ll long long
#define reg register
#define p 998244353
#define add(x,y) (x+y>=p?x+y-p:x+y)
#define dec(x,y) (x<y?x-y+p:x-y)
using namespace std;
inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = (ll)res*a%p;
a = (ll)a*a%p;
t >>= 1;
}
return res;
}
inline void read(int &x){
x = 0;
char c = getchar();
while(c<'0'||c>'9') c = getchar();
while(c>='0'&&c<='9'){
x = (x<<3)+(x<<1)+(c^48);
c = getchar();
}
}
void print(int x){
if(x>9) print(x/10);
putchar(x%10+'0');
}
int rev[N],rt[N],inv[N],inv2[N];
int siz;
void init(int n){
int w,lim = 1;
while(lim<=n) lim <<= 1,++siz;
for(reg int i=1;i!=lim;++i) rev[i] = (rev[i>>1]>>1)|((i&1)<<(siz-1));
inv2[1] = inv[1] = rt[lim>>1] = 1;
w = power(114514,(p-1)>>siz); //114514 也是 998244353 的原根
for(reg int i=(lim>>1)+1;i!=lim;++i) rt[i] = (ll)rt[i-1]*w%p;
for(reg int i=(lim>>1)-1;i;--i) rt[i] = rt[i<<1];
for(reg int i=2;i<=n;++i) inv[i] = (ll)(p-p/i)*inv[p%i]%p;
for(reg int i=1;i<=siz;++i) inv2[1<<i] = p-((p-1)>>i);
}
inline int getlen(int n){
return 1<<(32-__builtin_clz(n));
}
inline void NTT(int *f,int type,int lim){
if(type==-1) reverse(f+1,f+lim);
static unsigned long long a[N];
reg int x,shift = siz-__builtin_ctz(lim);
for(reg int i=0;i!=lim;++i) a[rev[i]>>shift] = f[i];
for(reg int mid=1;mid!=lim;mid<<=1)
for(reg int j=0;j!=lim;j+=(mid<<1))
for(reg int k=0;k!=mid;++k){
x = a[j|k|mid]*rt[mid|k]%p;
a[j|k|mid] = a[j|k]-x+p;
a[j|k] += x;
}
for(reg int i=0;i!=lim;++i) f[i] = a[i]%p;
if(type==1) return;
x = inv2[lim];
for(reg int i=0;i!=lim;++i) f[i] = (ll)f[i]*x%p;
}
inline void inverse(const int *f,int n,int *R){
static int g[N],h[N],s[30];
memset(g,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
while(n){
s[++top] = n;
n >>= 1;
}
g[0] = power(f[0],p-2);
while(top--){
n = s[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,f,(n+1)<<2);
memset(h+n+1,0,(lim-n)<<2);
NTT(g,1,lim),NTT(h,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = g[i]*(2-(ll)g[i]*h[i]%p+p)%p;
NTT(g,-1,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(R,g,(n+1)<<2);
}
inline void log(int *f,int n){
static int g[N];
int lim = getlen(n<<1);
inverse(f,n,g);
memset(g+n+1,0,(lim-n)<<2);
for(reg int i=0;i!=n;++i) f[i] = (ll)f[i+1]*(i+1)%p;
f[n] = 0;
NTT(f,1,lim),NTT(g,1,lim);
for(reg int i=0;i!=lim;++i) f[i] = (ll)f[i]*g[i]%p;
NTT(f,-1,lim);
for(reg int i=n;i;--i) f[i] = (ll)f[i-1]*inv[i]%p;
f[0] = 0;
memset(f+n+1,0,(lim-n)<<2);
}
inline void exp(const int *f,int n,int *R){
static int g[N],h[N],s[30];
int lim = 1,top = 0;
memset(g,0,getlen(n<<1)<<2);
while(n){
s[++top] = n;
n >>= 1;
}
g[0] = 1;
while(top--){
n = s[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,g,(n+1)<<2);
memset(h+n+1,0,(lim-n)<<2);
log(g,n);
for(reg int i=0;i<=n;++i) g[i] = dec(f[i],g[i]);
g[0] = add(g[0],1);
NTT(g,1,lim),NTT(h,1,lim);
for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
NTT(g,-1,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(R,g,(n+1)<<2);
}
#define img 86583718
inline void cos(const int *f,int n,int *R){
static int g[N],h[N];
for(reg int i=0;i<=n;++i) g[i] = (ll)f[i]*img%p;
exp(g,n,g);
inverse(g,n,h);
for(reg int i=0;i<=n;++i) R[i] = 499122177ll*(g[i]+h[i])%p;
}
inline void sin(const int *f,int n,int *R){
static int g[N],h[N];
for(reg int i=0;i<=n;++i) g[i] = (ll)f[i]*img%p;
exp(g,n,g);
inverse(g,n,h);
int x = power(img<<1,p-2);
for(reg int i=0;i<=n;++i) R[i] = (ll)x*(g[i]-h[i]+p)%p;
}
#undef img;
int F[N];
int n,tp;
int main(){
read(n),read(tp);
init(n<<1|1);
for(reg int i=0;i!=n;++i) read(F[i]);
if(tp==0) sin(F,n-1,F);
else cos(F,n-1,F);
for(reg int i=0;i!=n;++i) print(F[i]),putchar(' ');
return 0;
}