题解 P2868 【[USACO07DEC]观光奶牛Sightseeing Cows】
题解里似乎都没有提到这么一种情况,如果环里经过一个点两次(去一次,回来一次),点的fi只会被计算一次,但是如果按照题解里的算法的话,这个点的fi会被计算两次。
如果一个点被计算两次的话,分子上的东西就比分母上的东西少,以下推导都没法进行。
(这个bug让我在模拟赛里面不敢写0/1规划算法,最后此题0分QwQ
现在就要证明,如果环上的比率最优,则必然不会有一个点被经过两次。
首先,如果一个环经过一个点两次,则必然可以通过那个点(设为
我们的目标就是证明:
由于右式含有T1+T2作为分母,因此就可以考虑将两环求平均数。即,只需要证明:
因为我们分的两个都是环,至少要经过两条边,同时题目保证
因此,可得:
Q.E.D.
因此,我们可以得出,该算法只适用于
(很有可能是爆搜了QwQ)
其他部分题解的各位神仙已经讲得很清楚了,为了内容的完整性,还是写完吧QwQ。
首先,原题可以转化为,求一个环,使得
对于0/1分数规划,考虑二分。二分可将一个最优化问题转化为一个判定问题。如果二分出来的mid为
分数乘过去(保证
由于左式不好搞,考虑变换。如果将左式乘以-1,原式变为:
既然所有边成一个环,那不就是一个负环的方程嘛??
于是算法就出来了,先二分答案,然后对于一个mid,将边权变为边权乘mid再减去一个端点的F[i](随便入端点还是出端点,反正是个环),最后stacked spfa找负环判定。
附AC代码:
#include <stack>
#include <cmath>
#include <cstdio>
using namespace std;
inline double lfabs(double x)
{
return x<0?-x:x;
}
int beg[1005];
int ed[5005];
int nxt[5005];
int len[5005];
int top;
void addedge(int a,int b,int c)
{
++top;
ed[top] = b;
len[top] = c;
nxt[top] = beg[a];
beg[a] = top;
}
int n;
int fi[5005];
int inq[5005];
int inqn[5005];
double dist[5005];
bool spfa(int s,double delta)
{
dist[s] = 0;
inq[s] = 0;
stack<int> stk;
stk.push(s);
while(!stk.empty())
{
int th = stk.top();
stk.pop();
inq[th] = 0;
for(int p=beg[th]; p; p=nxt[p])
{
if(dist[th] + (delta*len[p]-fi[th]) < dist[ed[p]])
{
dist[ed[p]] = dist[th] + (delta*len[p]-fi[th]);
if(!inq[ed[p]])
{
stk.push(ed[p]);
++inqn[ed[p]];
inq[ed[p]] = 1;
if(inqn[ed[p]] > n+10)
{
return true;
}
}
}
}
}
return false;
}
int main()
{
int p;
scanf("%d%d",&n,&p);
for(int i=1; i<=n; ++i)
{
scanf("%d",fi+i);
}
for(int i=1; i<=p; ++i)
{
int a,b,t;
scanf("%d%d%d",&a,&b,&t);
addedge(a,b,t);
}
double l = 0;
double r = 1005;
while(lfabs(r-l) >= 0.0001)
{
double mid = (l+r)/2;
for(int i=1; i<=n; ++i)
{
dist[i] = 99999999;
inq[i] = inqn[i] = 0;
}
for(int i=1; i<=n; ++i)
{
if(!inqn[i])
{
if(spfa(i,mid))
{
l = mid;
goto die;
}
}
}
r = mid;
die:;
}
printf("%.2lf",l+0.00005);
}