题解:P13982 数列分块入门 7
传播分块邪恶思想
类似 P3373,维护一个加标记
对于整块:
- 如果是加操作,
taga 加上c 。 - 如果是乘操作,
taga 和tagb 都乘上c 。
对于散块,先像线段树一样下传懒标记再暴力修改即可。
时间复杂度
CODE
#include<bits/stdc++.h>
#define int long long
#define void inline void
using namespace std;
const int maxn = 3e+5 + 5, kMaxN = 550, mod = 10007;
int n, sq;
int a[maxn], tag1[kMaxN], tag2[kMaxN], L[kMaxN], R[kMaxN], bel[maxn], b[maxn], c[maxn];
void build()
{
sq = sqrt(n);
int len = n / sq;
for (int i = 1; i <= sq; i++)
{
L[i] = R[i - 1] + 1;
R[i] = L[i] + len - 1;
}
if (R[sq] < n)
{
sq++;
L[sq] = R[sq - 1] + 1;
R[sq] = n;
}
for (int i = 1; i <= sq; i++)
{
tag2[i] = 1;
for (int j = L[i]; j <= R[i]; j++)
{
// cout << "j: " << j << " i: " << i << '\n';
b[j] = 1;
bel[j] = i;
}
}
}
void pushdown(int p)
{
for (int i = L[p]; i <= R[p]; i++)
{
a[i] = (a[i] * tag2[p] % mod + tag1[p]) % mod;
}
tag2[p] = 1, tag1[p] = 0;
}
void update_part_1(int l, int r, int val)
{
pushdown(bel[l]);
for (int i = l; i <= r; i++)
{
a[i] = (a[i] + val) % mod;
}
}
void update_part_2(int l, int r, int val)
{
pushdown(bel[l]);
for (int i = l; i <= r; i++)
{
a[i] = a[i] * val % mod;
}
}
void update_1(int l, int r, int val)
{
if (bel[r] == bel[l])
{
update_part_1(l, r, val);
return;
}
update_part_1(l, R[bel[l]], val);
update_part_1(L[bel[r]], r, val);
for (int i = bel[l] + 1; i < bel[r]; i++)
{
tag1[i] = (tag1[i] + val) % mod;
}
}
void update_2(int l, int r, int val)
{
if (bel[r] == bel[l])
{
update_part_2(l, r, val);
return;
}
update_part_2(l, R[bel[l]], val);
update_part_2(L[bel[r]], r, val);
for (int i = bel[l] + 1; i < bel[r]; i++)
{
tag1[i] = tag1[i] * val % mod;
tag2[i] = tag2[i] * val % mod;
}
}
inline int query(int x)
{
return (a[x] * tag2[bel[x]] % mod + tag1[bel[x]] * b[x] % mod) % mod;
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
build();
for (int i = 1; i <= n; i++)
{
int opt, l, r, c;
cin >> opt >> l >> r >> c;
if (opt == 0)
{
update_1(l, r, c);
}
else if (opt == 1)
{
update_2(l, r, c);
}
else
{
cout << (query(r) + mod) % mod << '\n';
}
}
return 0;
}