P6638 「JYLOI Round 1」常规 题解
题目大意
给出常数
题目分析
查询转换为前缀思路往往会变得清晰,考虑如何求
考虑将
暴力拆开式子,得到:
前两项可以维护前缀和
新的前两项依旧可以
请仔细阅读强制在线的要求。
#include<bits/stdc++.h>
#define ll long long
#define L(x) xd[x].l
#define R(x) xd[x].r
#define mid (l+r>>1)
#define lc(x) L(x),l,mid
#define rc(x) R(x),mid+1,r
#define OK Ll<=l&&r<=Rr
#define rep(x,y,z) for(int x=(y);x<=(z);x++)
#define repn(x) rep(x,1,n)
#define repm(x) rep(x,1,m)
int read(){int s=0,w=1;char c=getchar();while(c<48||c>57) {if(c=='-') w=-1;c=getchar();}while(c>=48&&c<=57)s=(s<<1)+(s<<3)+c-48,c=getchar();return s*w;}
void pf(ll x){if(x<0) putchar('-'),x=-x;if(x>9)pf(x/10);putchar(x%10+48);}
using namespace std;
const int N =1e5+5,M=1e7+5;
bool ty=read();
int n=read(),m=read(),k=read(),md,a[N],lsh[N],b[N],ln,c[N],tot,ct[N],rt[N];
ll lastans,pr[N],pc[N];
int in(int i){
int x=read();
if(ty&&i>1)x=(lastans+x-1)%md+1;
return x;
}
struct seg{
int l,r,w;
}xd[M];
inline int modify(int &x,int X,int l,int r,int p){
xd[++x]=xd[X],xd[x].w++;
int nw=x;
if(l==r)return x;
p<=mid?L(nw)=modify(x,lc(X),p):R(nw)=modify(x,rc(X),p);
return nw;
}
inline int query(int x,int l,int r,int Ll,int Rr){
if(OK)return xd[x].w;
if(Rr<=mid)return query(lc(x),Ll,Rr);
if(Ll>mid)return query(rc(x),Ll,Rr);
return query(lc(x),Ll,Rr)+query(rc(x),Ll,Rr);
}
int find(int x){
int l=1,r=n,ans=0;
while(l<=r)if(a[mid]<=x)ans=mid,l=mid+1;
else r=mid-1;
return ans;
}
int gt(int x){
int l=1,r=ln,ans=ln+1;
while(l<=r)if(b[mid]>x)ans=mid,r=mid-1;
else l=mid+1;
return ans;
}
ll calc(int x){
int p=find(x);
if(!p)return 0;
ll ans=1LL*x*p-pr[p]-1LL*(x%k)*p+pc[p];
int ps=gt(x%k);
if(ps!=ln+1)ans-=1LL*k*query(rt[p],1,ln,ps,ln);
return ans/k;
}
signed main(){
if(ty)md=read();
repn(i)a[i]=read();
sort(a+1,a+n+1);
repn(i)pr[i]=pr[i-1]+a[i],c[i]=lsh[i]=a[i]%k;
sort(lsh+1,lsh+n+1),lsh[n+1]=-1;
repn(i)if(lsh[i]^lsh[i+1])b[++ln]=lsh[i];
repn(i)pc[i]=pc[i-1]+c[i],c[i]=lower_bound(b+1,b+ln+1,c[i])-b,rt[i]=modify(tot,rt[i-1],1,ln,c[i]);
repm(i){
int l=in(i),r=in(i);
if(l>r)swap(l,r);
lastans=calc(r)-calc(l-1),pf(lastans),putchar('\n');
}
return 0;
}