HGOI div1 E 题解
NaCly_Fish · · 题解
场上就一个人 AC,怎么回事呢?
样例给的做法提示很明显,就是 有
有
然后需要计算给
后一部分很简单,前一部分有个暴力做法:做换元
可以直接维护分子和分母分治求和。
最后把总和变为期望就是除一个方案数,令
参考代码(没太注意实现细节,跑得比较慢):
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 1048579
#define p 998244353
#define ll long long
using namespace std;
inline void read(int &x){
x = 0;
char c = getchar();
while(c<'0'||c>'9') c = getchar();
while(c>='0'&&c<='9'){
x = (x<<3)+(x<<1)+(c^48);
c = getchar();
}
}
void print(int x){
if(x>9) print(x/10);
putchar(x%10+'0');
}
inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = (ll)res*a%p;
a = (ll)a*a%p;
t >>= 1;
}
return res;
}
inline int add(const int& x,const int& y){ return x+y>=p?x+y-p:x+y; }
inline int dec(const int& x,const int& y){ return x<y?x-y+p:x-y; }
int rt[N],rev[N],fac[N],ifac[N],inv[N];
int siz;
void init(int n){
int w,lim = 1;
while(lim<=n) lim <<= 1,++siz;
for(int i=1;i!=lim;++i) rev[i] = (rev[i>>1]>>1)|((i&1)<<(siz-1));
w = power(3,(p-1)>>siz);
inv[1] = fac[0] = fac[1] = ifac[0] = ifac[1] = rt[lim>>1] = 1;
for(int i=(lim>>1)+1;i!=lim;++i) rt[i] = (ll)rt[i-1]*w%p;
for(int i=(lim>>1)-1;i;--i) rt[i] = rt[i<<1];
for(int i=2;i<=n;++i) fac[i] = (ll)fac[i-1]*i%p;
ifac[n] = power(fac[n],p-2);
for(int i=n-1;i;--i) ifac[i] = (ll)ifac[i+1]*(i+1)%p;
for(int i=2;i<=n;++i) inv[i] = (ll)fac[i-1]*ifac[i]%p;
}
inline void dft(int *f,int n){
static unsigned long long a[N];
int x,shift = siz-__builtin_ctz(n);
for(int i=0;i!=n;++i) a[rev[i]>>shift] = f[i];
for(int mid=1;mid!=n;mid<<=1)
for(int j=0;j!=n;j+=(mid<<1))
for(int k=0;k!=mid;++k){
x = a[j|k|mid]*rt[mid|k]%p;
a[j|k|mid] = a[j|k]+p-x;
a[j|k] += x;
}
for(int i=0;i!=n;++i) f[i] = a[i]%p;
}
inline void idft(int *f,int n){
reverse(f+1,f+n);
dft(f,n);
int x = p-((p-1)>>__builtin_ctz(n));
for(int i=0;i!=n;++i) f[i] = (ll)f[i]*x%p;
}
inline int getlen(int n){ return 1<<(32-__builtin_clz(n)); }
inline void inverse(const int *f,int n,int *r){
static int g[N],h[N],st[30];
memset(g,0,getlen(n<<1)<<2);
int lim = 1,top = 0;
while(n){
st[++top] = n;
n >>= 1;
}
g[0] = 1;
while(top--){
n = st[top+1];
while(lim<=(n<<1)) lim <<= 1;
memcpy(h,f,(n+1)<<2);
memset(h+n+1,0,(lim-n)<<2);
dft(g,lim),dft(h,lim);
for(int i=0;i!=lim;++i) g[i] = g[i]*(2-(ll)g[i]*h[i]%p+p)%p;
idft(g,lim);
memset(g+n+1,0,(lim-n)<<2);
}
memcpy(r,g,(n+1)<<2);
}
int n,A,B;
int pr[N],a[N],C[N];
void product(int l,int r,int *R){
if(l==r){
R[0] = p+1-pr[l],R[1] = pr[l];
return;
}
int lim = getlen(r-l+1),mid = (l+r)>>1;
int fl = mid-l+1,gl = r-mid;
int f[lim+2],g[lim+2];
product(l,mid,f),product(mid+1,r,g);
memset(f+fl+1,0,(lim-fl)<<2);
memset(g+gl+1,0,(lim-gl)<<2);
dft(f,lim),dft(g,lim);
for(int i=0;i!=lim;++i) R[i] = (ll)f[i]*g[i]%p;
idft(R,lim);
}
void prod2(int l,int r,int *R){
if(l==r){
R[0] = R[2] = a[l],R[1] = ((p+1-a[l])<<1)%p;
return;
}
int lim = getlen((r-l+1)<<1),mid = (l+r)>>1;
int fl = (mid-l+1)<<1,gl = (r-mid)<<1;
int f[lim+2],g[lim+2];
prod2(l,mid,f),prod2(mid+1,r,g);
memset(f+fl+1,0,(lim-fl)<<2);
memset(g+gl+1,0,(lim-gl)<<2);
dft(f,lim),dft(g,lim);
for(int i=0;i!=lim;++i) R[i] = (ll)f[i]*g[i]%p;
idft(R,lim);
}
void solve(int l,int r,const int *sc,int *fz,int *fm){ // 多项式复合 F(e^x)
if(l==r){
fz[0] = sc[l+A],fm[0] = 1,fm[1] = (p-l)%p;
return;
}
int lim = getlen(r-l+1),mid = (l+r)>>1;
int fl = mid-l+1,gl = r-mid;
int lfz[lim+2],lfm[lim+2],rfz[lim+2],rfm[lim+2];
solve(l,mid,sc,lfz,lfm),solve(mid+1,r,sc,rfz,rfm);
memset(lfz+fl,0,(lim-fl+1)<<2),memset(lfm+fl+1,0,(lim-fl)<<2);
memset(rfz+gl,0,(lim-gl+1)<<2),memset(rfm+gl+1,0,(lim-gl)<<2);
dft(lfz,lim),dft(lfm,lim),dft(rfz,lim),dft(rfm,lim);
for(int i=0;i!=lim;++i){
fz[i] = ((ll)lfz[i]*rfm[i]+(ll)lfm[i]*rfz[i])%p;
fm[i] = (ll)lfm[i]*rfm[i]%p;
}
idft(fz,lim),idft(fm,lim);
}
inline void deriv(const int *f,int n,int *R){
for(int i=1;i!=n;++i) R[i-1] = (ll)i*f[i]%p;
R[n-1] = 0;
}
inline void integ(const int *f,int n,int *R){
for(int i=n-1;i;--i) R[i] = (ll)f[i-1]*inv[i]%p;
R[0] = 0;
}
inline void log(const int *f,int n,int *r){
static int g[N],h[N];
inverse(f,n,g);
deriv(f,n+1,h);
int lim = getlen(n<<1);
memset(g+n+1,0,(lim-n)<<2);
memset(h+n+1,0,(lim-n)<<2);
dft(g,lim),dft(h,lim);
for(int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
idft(g,lim);
integ(g,n+1,r);
}
inline void exp(const int *a,int n,int *R){
int m = n+1;
n = 1;
while(n<m) n <<= 1;
static int der[N],b[N],c[N],dfta[N],dftb[N],dftb2[N],dftc[N];
for(int i=0;i!=n;++i) b[i] = c[i] = dfta[i] = dftb[i] = dftb2[i] = dftc[i] = 0;
dftb2[0] = b[0] = c[0] = 1;
dft(dftb2,2);
deriv(a,n,der);
for(int d=1;d!=n;d<<=1){
memcpy(dftc,c,d<<2);
dft(dftc,d<<1);
for(int i=0;i!=d;++i) dftb[i] = (ll)dftb2[i<<1]*dftc[i<<1]%p;
idft(dftb,d);
dftb[0] = dec(dftb[0],1);
for(int i=0;i!=d;++i) dftb[d+i] = dftb[i];
memset(dftb,0,d<<2);
dft(dftb,d<<1);
memcpy(dfta,der,(d-1)<<2);
dfta[d-1] = 0;
dft(dfta,d<<1);
for(int i=0;i!=(d<<1);++i) dfta[i] = (ll)dfta[i]*dftb[i]%p;
idft(dfta,d<<1);
deriv(b,d,dftb);
dft(dftb,d);
for(int i=0;i!=d;++i) dftb[i] = (ll)dftb[i]*dftc[i<<1]%p;
idft(dftb,d);
for(int i=0;i!=d-1;++i) dftb[d+i] = dec(dftb[i],der[i]);
memset(dftb,0,(d-1)<<2);
for(int i=d-1;i!=(d<<1);++i) dftb[i] = dec(dftb[i],add(der[i],dfta[i]));
integ(dftb,d<<1,dftb);
dft(dftb,d<<1);
for(int i=0;i!=(d<<1);++i) dftb[i] = (ll)dftb[i]*dftb2[i]%p;
idft(dftb,d<<1);
for(int i=d;i!=(d<<1);++i) b[i] = p-dftb[i];
if((d<<1)==n) continue;
memcpy(dftb2,b,d<<3);
dft(dftb2,d<<2);
for(int i=0;i!=(d<<1);++i) dftb[i] = (ll)dftb2[i<<1]*dftc[i]%p;
idft(dftb,d<<1);
memset(dftb,0,d<<2);
dft(dftb,d<<1);
for(int i=0;i!=(d<<1);++i) dftb[i] = (ll)dftb[i]*dftc[i]%p;
idft(dftb,d<<1);
for(int i=d;i!=(d<<1);++i) c[i] = p-dftb[i];
}
memcpy(R,b,m<<2);
}
int f[N],g[N],fz[N],fm[N],suf[N];
int pw,ans;
int main(){
read(n),read(A),read(B);
if(n<B){
puts("0");
return 0;
}
init(800000);
for(int i=1;i<=n;++i) read(pr[i]);
for(int i=1;i<=A;++i) read(a[i]);
product(1,n,C),prod2(1,A,f);
solve(-A,A,f,fz,fm);
for(int i=n+1;i<=(A<<1);++i) fz[i] = fm[i] = 0;
inverse(fm,n,fm);
int lim = getlen(n<<1);
dft(fz,lim),dft(fm,lim);
for(int i=0;i!=lim;++i) fz[i] = (ll)fz[i]*fm[i]%p;
idft(fz,lim);
memset(fz+n+1,0,(lim-n)<<2),memset(f,0,lim<<2);
for(int i=0;i<=n;++i) fz[i] = (ll)fz[i]*ifac[i]%p;
int tn = max((n-B)>>1,4);
for(int i=0;i<=tn;++i) f[i] = ifac[i<<1|1];
log(f,tn,f);
for(int i=0;i<=tn;++i) f[i] = (ll)f[i]*B%p;
exp(f,tn,f);
for(int i=tn;i;--i) f[i<<1] = f[i],f[i] = 0;
for(int i=n;i>=B;--i) f[i] = f[i-B];
memset(f,0,B<<2),memset(f+n+1,0,(lim-n)<<2);
for(int i=0;(i<<1)<=n;++i) g[i] = ifac[i<<1];
log(g,n>>1,g);
for(int i=0;(i<<1)<=n;++i) g[i] = (ll)g[i]*A%p;
exp(g,n>>1,g);
for(int i=(n>>1);i;--i) g[i<<1] = g[i],g[i] = 0;
dft(fz,lim),dft(f,lim),dft(g,lim);
for(int i=0;i!=lim;++i){
fz[i] = (ll)fz[i]*f[i]%p;
g[i] = (ll)g[i]*f[i]%p;
}
idft(fz,lim),idft(g,lim);
suf[n+1] = 1;
for(int i=n;i;--i) suf[i] = (ll)suf[i+1]*(g[i]==0?1:g[i])%p;
int pre = power(suf[1],p-2);
for(int i=1;i<=n;++i){
ans = (ans+(ll)fz[i]*C[i]%p*pre%p*suf[i+1])%p;
pre = (ll)pre*(g[i]==0?1:g[i])%p;
}
for(int i=1;i<=B;++i){
read(pw);
ans = (ll)ans*pw%p;
}
ans = (ll)ans*power(2,p-A-1)%p;
print(ans);
return 0;
}