题解 P1613 【跑路】

· · 题解

分析

这道题目求的是从1号点到n号点最少要几秒到达。我们可以看到这个跑路器,每秒跑2^k条边(每条边1km),所以呢,这道题目明显就和“倍增”扯上了关系。回忆倍增,我们总是用一个参数k表示2^k,这道题目也一样,我们需要用一个bool类型G数组,G[i][j][k]代表从i到j是否存在一条长度为2^k的路径。再用dis数组来记录两点之间需要用多久到达。这样我们可以用G来保存所有的边,并且进行预处理,把所有一秒能到的两个点之间都连上边,并把距离相应调整为1。那么我们就把所有一秒能到的点之间都铺上了边,接下来我们就要求出两点之间的最短路啦,那么,大家都明白了,对于50的数据,Floyd绝对是最简单可行的办法了。

下面上代码。

代码

#include<bits/stdc++.h>
using namespace std;
int dis[60][60],n,m;
bool G[60][60][65];
/*以上是变量说明部分,dis[i][j]表示i到j的路径/边的长度
G[i][j][k]表示,i到j是否存在一条长度为2^k的路径
如果有,为true,没有就是false*/ 
void init()
{
    memset(G,false,sizeof(G));
    memset(dis,10,sizeof(dis));
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        dis[x][y]=1;
        G[x][y][0]=true;
        /*初始化,x到y的路径(边)最短是1,也就是x到y存在
        一条长度为2^0的路径(边)*/ 
    }
}
void work()//此函数对G和dis做预处理 
{
    for(int k=1;k<=64;k++)
    //对于本题的数据,2^64已经足够。 
    for(int i=1;i<=n;i++)
    for(int t=1;t<=n;t++)
    for(int j=1;j<=n;j++)
    //枚举三个点
    if(G[i][t][k-1]&&G[t][j][k-1])
    /*如果i到t存在一条2^k-1长度的路径
    并且t到j存在一条2^k-1长度的路径
    就说明i到t,t到j都可以一秒到达,
    路程*2刚好是2的幂,也可以一秒到达*/ 
    {
        G[i][j][k]=true;
        //标记从i到j存在一条长度为2^k的路径 
        dis[i][j]=1;
        //i到j距离可以一秒到达 
    }
}
void floyd()
{
    for(int k=1;k<=n;k++)
    //这里的注意点:枚举中间点的循环放在最前面 
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
    //松弛操作。 
}//Floyd图论求最短路。 
int main()
{
    init();
    work();
    floyd();
    printf("%d",dis[1][n]);
    return 0;
}